10 resultados para PRECISE LENGTH
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
[Abstract]
Resumo:
This thesis analyses the calculation of FanSave and PumpSave energy saving tools calculation. With these programs energy consumption of variable speed drive control for fans and pumps can be compared to other control methods. With FanSave centrifugal and axial fans can be examined and PumpSave deals with centrifugal pumps. By means of these programs also suitable frequency converter can be chosen from the ABB collection. Programs need as initial values information about the appliances like amount of flow and efficiencies. Operation time is important factor when calculating the annual energy consumption and information about it are the length and profile. Basic theory related to fans and pumps is introduced without more precise instructions for dimensioning. FanSave and PumpSave contain various methods for flow control. These control methods are introduced in the thesis based on their operational principles and suitability. Also squirrel cage motor and frequency converter are introduced because of their close involvement to fans and pumps. Second part of the thesis contains comparison between results of FanSave’s and PumpSave’s calculation and performance curve based calculation. Also laboratory tests were made with centrifugal and axial fan and also with centrifugal pump. With the results from this thesis the calculation of these programs can be adjusted to be more accurate and also some new features can be added.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
The study examines the signalling of text organisation in research articles (RA) in French. The work concentrates on a particular type of organisation provided by text sequences, i.e. structures organising text to items of which at least some are signalled by markers of addition or order: First… 0… The third point… In addition… / Premièrement… 0… Le troisième point… De plus… By indicating the way the text is organised, these structures guide the reader in the reading process so that he doesn’t need to interpret the text structure himself. The aim of the work is to study factors affecting the marking of text sequences. Why is their structure sometimes signalled explicitly by markers such as secondly, whereas in other places such markers are not used? The corpus is manually XML-annotated and consists of 90 RAs (~800 000 words) in French from the fields of linguistics, education and history. The analysis highlights several factors affecting the marking of text sequences. First, exact markers (such as fist ) seem to be more frequent in sequences where all the items are explicitly signalled by a marker, whereas additive markers (such as moreover) are used in sequences with both explicitly signalled and unmarked items. The marking of explicitly signalled sequences seems thus to be precise and even repetitive, whereas the signalling of sequences with unmarked items is altogether more vague. Second, the marking of text sequences seems to depend on the length of the text. The longer the text segment, the more vague the marking. Additive markers and unmarked items are more frequent in longer sequences possibly covering several pages, whereas shorter sequences are often signalled explicitly by exact markers. Also the marker types vary according to the sequence length. Anaphoric expressions, such as first, are fairly close to their referents and are used in short sequences, connectors, such as secondly, are frequently used in sequences of intermediate length, whereas the longest sequences are often signalled by constructions composed of an ordinal and a noun acting as a subject of the sentence: The first item is… Finally, the marking of text organisation depends also on the discipline the RA belongs to. In linguistics, the marking is fairly frequent and precise; exact markers such as second are the most used, and structures with unmarked items are less common. Similarly, the marking is fairly frequent in education. In this field, however, it is also less precise than in linguistics, with frequent unmarked items and additive markers. History, on the other hand, is characterised by less frequent marking. In addition, when used, the marking in this field is also less precise and less explicit.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.