3 resultados para PORTALES WEB - CONGRESOS, CONFERENCIAS, ETC.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
With the growth in new technologies, using online tools have become an everyday lifestyle. It has a greater impact on researchers as the data obtained from various experiments needs to be analyzed and knowledge of programming has become mandatory even for pure biologists. Hence, VTT came up with a new tool, R Executables (REX) which is a web application designed to provide a graphical interface for biological data functions like Image analysis, Gene expression data analysis, plotting, disease and control studies etc., which employs R functions to provide results. REX provides a user interactive application for the biologists to directly enter the values and run the required analysis with a single click. The program processes the given data in the background and prints results rapidly. Due to growth of data and load on server, the interface has gained problems concerning time consumption, poor GUI, data storage issues, security, minimal user interactive experience and crashes with large amount of data. This thesis handles the methods by which these problems were resolved and made REX a better application for the future. The old REX was developed using Python Django and now, a new programming language, Vaadin has been implemented. Vaadin is a Java framework for developing web applications and the programming language is extremely similar to Java with new rich components. Vaadin provides better security, better speed, good and interactive interface. In this thesis, subset functionalities of REX was selected which includes IST bulk plotting and image segmentation and implemented those using Vaadin. A code of 662 lines was programmed by me which included Vaadin as the front-end handler while R language was used for back-end data retrieval, computing and plotting. The application is optimized to allow further functionalities to be migrated with ease from old REX. Future development is focused on including Hight throughput screening functions along with gene expression database handling