63 resultados para PID and Fuzzy and practical models
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Resumo:
Summary
Resumo:
Selostus: Viljelyvyöhykkeiden ja kasvumallien soveltaminen ilmastonmuutoksen tutkimisessa: Mackenzien jokialue, Kanada
Resumo:
Abstract
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
The Standard Model of particle physics is currently the best description of fundamental particles and their interactions. All particles save the Higgs boson have been observed in particle accelerator experiments over the years. Despite the predictive power the Standard Model there are many phenomena that the scenario does not predict or explain. Among the most prominent dilemmas is matter-antimatter asymmetry, and much effort has been made in formulating scenarios that accurately predict the correct amount of matter-antimatter asymmetry in the universe. One of the most appealing explanations is baryogenesis via leptogenesis which not only serves as a mechanism of producing excess matter over antimatter but can also explain why neutrinos have very small non-zero masses. Interesting leptogenesis scenarios arise when other possible candidates of theories beyond the Standard Model are brought into the picture. In this thesis, we have studied leptogenesis in an extra dimensional framework and in a modified version of supersymmetric Standard Model. The first chapters of this thesis introduce the standard cosmological model, observations made on the photon to baryon ratio and necessary preconditions for successful baryogenesis. Baryogenesis via leptogenesis is then introduced and its connection to neutrino physics is illuminated. The final chapters concentrate on extra dimensional theories and supersymmetric models and their ability to accommodate leptogenesis. There, the results of our research are also presented.
Biophysical modeling of photosynthetic electron transfer and practical applications to cyanobacteria
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.