3 resultados para PHYLOGENY

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I conduct a series of molecular systematic studies on the large phytophagous moth superfamily Noctuoidea (Insecta, Lepidoptera) to clarify deep divergences and evolutionary affinities of the group, based on material from every zoogeographic region of the globe. Noctuoidea are the most speciose radiations of butterflies and moths on earth, comprising about a quarter of all lepidopteran diversity. The general aim of these studies was to apply suitably conservative genetic markers (DNA sequences of mitochondrial—mtDNA—and nuclear gene— nDNA—regions) to reconstruct, as the initial step, a robust skeleton phylogenetic hypothesis for the superfamily, then build up robust phylogenetic frameworks for those circumscribed monophyletic entities (i.e., families), as well as clarifying the internal classification of monophyletic lineages (subfamilies and tribes), to develop an understanding of the major lineages at various taxonomic levels within the superfamily Noctuoidea, and their inter-relationships. The approaches applied included: i) stabilizing a robust family-level classification for the superfamily; ii) resolving the phylogeny of the most speciose radiation of Noctuoidea: the family Erebidae; iii) reconstruction of ancestral feeding behaviors and evolution of the vampire moths (Erebidae, Calpinae); iv) elucidating the evolutionary relationships within the family Nolidae and v) clarifying the basal lineages of Noctuidae sensu stricto. Thus, in this thesis I present a wellresolved molecular phylogenetic hypothesis for higher taxa of Noctuoidea consisting of six strongly supported families: Oenosandridae, Notodontidae, Euteliidae, Erebidae, Nolidae, and Noctuidae. The studies in my thesis highlight the importance of molecular data in systematic and phylogenetic studies, in particular DNA sequences of nuclear genes, and an extensive sampling strategy to include representatives of all known major lineages of entire world fauna of Noctuoidea from every biogeographic region. This is crucial, especially when the model organism is as species-rich, highly diverse, cosmopolitan and heterogeneous as the Noctuoidea, traits that represent obstacles to the use of morphology at this taxonomic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiversity is unequally spread throughout terrestrial ecosystems. The highest species richness of animals and plants is encountered around the Equator, and naturalists observe a decrease in the number of creatures with increasing latitude. Some animal groups, however, display an anomalous species richness pattern, but these are exceptions to the general rule. Crane flies (Diptera, Tipuloidea) are small to large sized, non-biting nematoceran insects, being mainly associated with moist environments. The species richness of crane flies is highest in the tropics, but these insects are species rich and abundant in all biogeographic realms, boreal and arctic biomes included. The phylogeny and systematics of crane flies are still at an early stage and somewhat controversial. New species are constantly discovered even from temperate Europe, faunistically the best known continent. Crane flies have been rather neglected group of insects in Finland. The history of Finnish crane fly taxonomy and faunistics started in 1907, the year when Carl Lundström published his two first articles on tipuloids. Within roughly 100 years there have been only a handful of entomologists studying the Finnish fauna, and the species richness and natural history of these flies have remained poorly understood and mapped. The aim of this thesis is to clarify the taxonomy of Finnish crane flies, present an updated and annotated list of species and seek patterns in regional species richness and assemblage composition. Tipula stackelbergi Alexander has been revised (I). This species was elevated to a species rank from a subspecific rank under T. pruinosa Wiedemann and T. stackelbergi was also deleted from the list of European crane flies. Two new synonyms were found: T. subpruinosa Mannheims is a junior synonym of T. freyana Lackschewitz and T. usuriensis Alexander is a junior synonym of T. pruinosa. A new species Tipula recondita Pilipenko & Salmela has been described (II). Both morphology and COI (mtDNA) sequences were used in the assessment of the status of the species. The new species is highly disjunct, known from Finland and Russian Far East. A list of Finnish crane flies was presented, including the presence of species in the Finnish biogeographical provinces (III). A total of twenty-four species were formally reported for the first time from Finland and twenty-two previously reported species were deleted from the list. A short historical review on the studies of Finnish crane flies has been provided. The current list of Finnish species consists of 338 crane flies (IV, Appendix I). Species richness of all species and saproxylic/fungivorous species is negatively correlated with latitude, but mire-dwelling species show a reversed species richness gradient (i.e. an increase in the number of species toward north). Provincial assemblages displayed a strong latitudinal gradient and faunistic distance increased with increasing geographical distance apart of the provinces. Nearly half (48 %) of the Finnish crane flies are Trans-Palaearctic, roughly one-third (34 %) are West Palaearctic and only 16 and 2 % are Holarctic and Fennoscandian, respectively. Due to the legacy of Pleistocene glaciations, endemic Fennoscandian species are problematic and it is thus concluded that there are probably no true endemic crane flies in this region. Finally, there are probably species living within Finnish borders that have hitherto remained unnoticed. Based on subjective assessment, the number of “true” (i.e. recorded + unknown species) species count of Finnish crane flies is at minimum 350.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are more than 7000 languages in the world, and many of these have emerged through linguistic divergence. While questions related to the drivers of linguistic diversity have been studied before, including studies with quantitative methods, there is no consensus as to which factors drive linguistic divergence, and how. In the thesis, I have studied linguistic divergence with a multidisciplinary approach, applying the framework and quantitative methods of evolutionary biology to language data. With quantitative methods, large datasets may be analyzed objectively, while approaches from evolutionary biology make it possible to revisit old questions (related to, for example, the shape of the phylogeny) with new methods, and adopt novel perspectives to pose novel questions. My chief focus was on the effects exerted on the speakers of a language by environmental and cultural factors. My approach was thus an ecological one, in the sense that I was interested in how the local environment affects humans and whether this human-environment connection plays a possible role in the divergence process. I studied this question in relation to the Uralic language family and to the dialects of Finnish, thus covering two different levels of divergence. However, as the Uralic languages have not previously been studied using quantitative phylogenetic methods, nor have population genetic methods been previously applied to any dialect data, I first evaluated the applicability of these biological methods to language data. I found the biological methodology to be applicable to language data, as my results were rather similar to traditional views as to both the shape of the Uralic phylogeny and the division of Finnish dialects. I also found environmental conditions, or changes in them, to be plausible inducers of linguistic divergence: whether in the first steps in the divergence process, i.e. dialect divergence, or on a large scale with the entire language family. My findings concerning Finnish dialects led me to conclude that the functional connection between linguistic divergence and environmental conditions may arise through human cultural adaptation to varying environmental conditions. This is also one possible explanation on the scale of the Uralic language family as a whole. The results of the thesis bring insights on several different issues in both a local and a global context. First, they shed light on the emergence of the Finnish dialects. If the approach used in the thesis is applied to the dialects of other languages, broader generalizations may be drawn as to the inducers of linguistic divergence. This again brings us closer to understanding the global patterns of linguistic diversity. Secondly, the quantitative phylogeny of the Uralic languages, with estimated times of language divergences, yields another hypothesis as to the shape and age of the language family tree. In addition, the Uralic languages can now be added to the growing list of language families studied with quantitative methods. This will allow broader inferences as to global patterns of language evolution, and more language families can be included in constructing the tree of the world’s languages. Studying history through language, however, is only one way to illuminate the human past. Therefore, thirdly, the findings of the thesis, when combined with studies of other language families, and those for example in genetics and archaeology, bring us again closer to an understanding of human history.