11 resultados para Out-of-hospital cardiac arrest
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
Kirjallisuusarvostelu
Resumo:
Social enterprises apply the best of business for the pursuit of social or environmental mission while also generating revenues. Globally, nearly 1,3 billion people lack access to electricity, as well as another billion having access to only low quality and infrequent electricity. Off-grid renewable energy, like solar, will increasingly have a key role in the solution of the energy access issue. The pioneer gap in off-grid renewable energy consists of financing (or funding) gaps and capacity gaps, to do with both the early stage of the enterprises in question, as well as the early stage of the whole industry. The gaps are emphasised by specific characteristics of off-grid renewable energy business models and the requirements of operating in bottom-of-the-pyramid markets. The marketing perspective to fundraising is chosen to uncover the possible role enterprises themselves have in bridging the pioneer gap. The purpose of this thesis is to study how social enterprises operating in off-grid renewable energy in Africa utilise marketing activities in their investor relations in bridging the pioneer gap. This main research question is divided into the following sub-questions: How does the pioneer gap affect fundraising for these enterprises? How are the funding needs for these enterprises characterised? How do these enterprises build trust in their investor relations? The theoretic framework is built on relationship marketing and investor relations, with an emphasis on creation of trust. The research is conducted as a thematical case study. Primary data is gathered via semi-structured interviews with six solar energy companies and two accelerators. According to the findings, the main components affecting trust-creation are diminished information asymmetry and perceived risk, mission alignment as well as a personal fit or relationship with the investor. Therefore, an enterprise can utilise e.g. the following marketing activities in their investor relations to bridge the pioneer gap: ensuring investor material, the enterprise story and presenting of them is clear, concise and complete to “package” the enterprise as an investment; taking investor needs and motivations into account as well as utilising existing investors as ambassadors.
Resumo:
The purpose of this study was to evaluate the effect of the birth hospital and the time of birth on mortality and the long-term outcome of Finnish very low birth weight (VLBW) or very low gestational age (VLGA) infants. This study included all Finnish VLBW/VLGA infants born at <32 gestational weeks or with a birth weight of ≤1500g, and controls born full-term and healthy. In the first part of the study, the mortality of VLBW/VLGA infants born in 2000–2003 was studied. The second part of the study consisted of a five-year follow-up of VLBW/VLGA infants born in 2001–2002. The study was performed using data from parental questionnaires and several registers. The one-year mortality rate was 11% for live-born VLBW/VLGA infants, 22% for live-born and stillborn VLBW/VLGA infants, and 0% for the controls. In live-born and in all (including stillbirths) VLBW/VLGA infants, the adjusted mortality was lower among those born in level III hospitals compared with level II hospitals. Mortality rates of live-born VLBW/VLGA infants differed according to the university hospital district where the birth hospital was located, but there were no differences in mortality between the districts when stillborn infants were included. There was a trend towards lower mortality rates in VLBW/VLGA infants born during office hours compared with those born outside office hours (night time, weekends, and public holidays). When stillborn infants were included, this difference according to the time of birth was significant. Among five-year-old VLBW/VLGA children, morbidity, use of health care resources, and problems in behaviour and development were more common in comparison with the controls. The health-related quality of life of the surviving VLBW/VLGA children was good but, statistically, it was significantly lower than among the controls. The median and the mean number of quality-adjusted life-years were 4.6 and 3.6 out of a maximum five years for all VLBW/VLGA children. For the controls, the median was 4.8 and the mean was 4.9. Morbidity rates, the use of health care resources, and the mean quality-adjusted life-years differed for VLBW/VLGA children according to the university hospital district of birth. However, the time of birth, the birth hospital level or university hospital district were not associated with the health-related quality of life, nor with behavioural and developmental scores of the survivors at the age of five years. In conclusion, the decreased mortality in level III hospitals was not gained at the expense of long-term problems. The results indicate that VLBW/VLGA deliveries should be centralized to level III hospitals and the regional differences in the treatment practices should further be clarified. A long-term follow-up on the outcome of VLBW/VLGA infants is important in order to recognize the critical periods of care and to optimise the care. In the future, quality-adjusted life-years can be used as a uniform measure for comparing the effectiveness of care between VLBW/VLGA infants and different patient groups
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.