6 resultados para Organelle biogenesis

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleus is a membrane enclosed organelle containing most of the genetic information of the cell in the form of chromatin. The nucleus, which can be divided into many sub-organelles such as the nucleoli, the Cajal bodies and the nuclear lamina, is the site for several essential cellular functions such as the DNA replication and its regulation and most of the RNA synthesis and processing. The nucleus is often affected in disease: the size and the shape of the nucleus, the chromatin distribution and the size of the nucleoli have remained the basis for the grading of several cancers. The maintenance of the vertebrate body shape depends on the skeleton. Similarly, in a smaller context, the shape of the cell and the nucleus are mainly regulated by the cytoskeletal and nucleoskeletal elements. The nuclear matrix, which by definition is a detergent, DNase and salt resistant proteinaceous nuclear structure, has been suggested to form the nucleoskeleton responsible for the nuclear integrity. Nuclear mitotic apparatus protein, NuMA, a component of the nuclear matrix, is better known for its mitotic spindle organizing function. NuMA is one of the nuclear matrix proteins suggested to participate in the maintenance of the nuclear integrity during interphase but its interphase function has not been solved to date. This thesis study concentrated on the role of NuMA and the nuclear matrix as structural and functional components of the interphase nucleus. The first two studies clarified the essential role of caspase-3 in the disintegration of the nuclear structures during apoptosis. The second study also showed NuMA and chromatin to co-elute from cells in significant amounts and the apoptotic cleavage of NuMA was clarified to have an important role in the dissociation of NuMA from the chromatin. The third study concentrated on the interphase function of NuMA showing NuMA depletion to result in cell cycle arrest and the cytoplasmic relocalization of NuMA interaction partner GAS41. We suggest that the relocalization of the transcription factor GAS41 may mediate the cell cycle arrest. Thus, this study has given new aspects in the interactions of NuMA, chromatin and the nuclear matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large biodiversity of cyanobacteria together with the increasing genomics and proteomics metadata provide novel information for finding new commercially valuable metabolites. With the advent of global warming, there is growing interest in the processes that results in efficient CO2 capture through the use of photosynthetic microorganisms such as cyanobacteria. This requires a detailed knowledge of how cyanobacteria respond to the ambient CO2. My study was aimed at understanding the changes in the protein profile of the model organism, Synechocystis PCC 6803 towards the varying CO2 level. In order to achieve this goal I have employed modern proteomics tools such as iTRAQ and DIGE, recombinant DNA techniques to construct different mutants in cyanobacteria and biophysical methods to study the photosynthetic properties. The proteomics study revealed several novel proteins, apart from the well characterized proteins involved in carbon concentrating mechanisms (CCMs), that were upregulated upon shift of the cells from high CO2 concentration (3%) to that in air level (0.039%). The unknown proteins, Slr0006 and flavodiiron proteins (FDPs) Sll0217-Flv4 and Sll0219-Flv2, were selected for further characterization. Although slr0006 was substantially upregulated under Ci limiting conditions, inactivation of the gene did not result in any visual phenotype under various environmental conditions indicating that this protein is not essential for cell survival. However, quantitative proteomics showed the induction of novel plasmid and chromosome encoded proteins in deltaslr0006 under air level CO2 conditions. The expression of the slr0006 gene was found to be strictly dependent on active photosynthetic electron transfer. Slr0006 contains conserved dsRNA binding domain that belongs to the Sua5/YrdC/YciO protein family. Structural modelling of Slr0006 showed an alpha/beta twisted open-sheet structure and a positively charged cavity, indicating a possible binding site for RNA. The 3D model and the co-localization of Slr0006 with ribosomal subunits suggest that it might play a role in translation or ribosome biogenesis. On the other hand, deletions in the sll0217-sll218- sll0219 operon resulted in enhanced photodamage of PSII and distorted energy transfer from phycobilisome (PBS) to PSII, suggesting a dynamic photoprotection role of the operon. Constructed homology models also suggest efficient electron transfer in heterodimeric Flv2/Flv4, apparently involved in PSII photoprotection. Both Slr0006 and FDPs exhibited several common features, including negative regulation by NdhR and ambiguous cellular localization when subjected to different concentrations of divalent ions. This strong association with the membranes remained undisturbed even in the presence of detergent or high salt. My finding brings ample information on three novel proteins and their functions towards carbon limitation. Nevertheless, many pathways and related proteins remain unexplored. The comprehensive understanding of the acclimation processes in cyanobacteria towards varying environmental CO2 levels will help to uncover adaptive mechanisms in other organisms, including higher plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytoskeleton is a key feature of both prokaryotic and eukaryotic cells. Itis comprised of three protein families, one of which is the intermediate filaments (IFs). Of these, the IFs are the largest and most diverse. The IFs are expressed throughout life, and are involved in the regulation of cell differentiation, homeostasis, ageing and pathogenesis. The IFs not only provide structural integrity to the cell, they are also involved in a range of cellular functions from organelle trafficking and cell migration to signalling transduction. The IFs are highly dynamic proteins, able to respond and adapt their network rapidly in response to intra- and extra- cellular cues. Consequently they interact with a whole host of cellular signalling proteins, regulating function, and activity, and cellular localisation. While the function of some of the better-known IFs such as the keratins is well studied, the understanding of the function of two IFs, nestin and vimentin, is poor. Nestin is well known as a marker of differentiation and is expressed in some cancers. In cancer, nestin is primarily described as is a promoter of cell motility, however, how it fulfils this role remains undefined. Vimentin too is expressed in cancer, and is known to promote cell motility and is used as a marker for epithelial to mesenchymal transition (EMT). It is only in the last decade that studies have addressed the role that vimentin plays in cell motility and EMT. This work provides novel insight into how the IFs, nestin and vimentin regulate cell motility and invasion. In particular we show that nestin regulates the cellular localisation and organisation of two key facilitators of cell migration, focal adhesion kinase and integrins. We identify nestin as a regulator of extracellular matrix degradation and integrin-mediated cell invasion. Two further studies address the specific regulation of vimentin by phosphorylation. A detailed characterisation study identified key phosphorylation sites on vimentin, which are critical for proper organisation of the vimentin network. Furthermore, we show that the bioactive sphingolipids are vimentin network regulators. Specifically, the sphingolipids induced RhoA kinasedependent (ROCK) phosphorylation at vimentin S71, which lead to filament reorganisation and inhibition of cell migration. Together these studies shed new light into the regulation of nestin and vimentin during cell motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Initially identified as stress activated protein kinases (SAPKs), the c-Jun Nterminal kinases (JNKs) are currently accepted as potent regulators of various physiologically important cellular events. Named after their competence to phosphorylate transcription factor c-Jun in response to UVtreatment, JNKs play a key role in cell proliferation, cell death or cell migration. Interestingly, these functions are crucial for proper brain formation. The family consists of three JNK isoforms, JNK1, JNK2 and JNK3. Unlike brain specific JNK3 isoform, JNK1 and JNK2 are ubiquitously expressed. It is estimated that ten splice variants exist. However, the detailed cellular functions of these remain undetermined. In addition, physiological conditions keep the activities of JNK2 and JNK3 low in comparison with JNK1, whereas cellular stress raises the activity of these isoforms dramatically. Importantly, JNK1 activity is constitutively high in neurons, yet it does not stimulate cell death. This suggests a valuable role for JNK1 in brain development, but also as an important mediator of cell wellbeing. The aim of this thesis was to characterize the functional relationship between JNK1 and SCG10. We found that SCG10 is a bona fide target for JNK. By employing differential centrifugation we showed that SCG10 co-localized with active JNK, MKK7 and JIP1 in a fraction containing endosomes and Golgi vesicles. Investigation of JNK knockout tissues using phosphospecific antibodies recognizing JNK-specific phosphorylation sites on SCG10 (Ser 62/Ser 73) showed that phosphorylation of endogenous SCG10 was dramatically decreased in Jnk1-/- brains. Moreover, we found that JNK and SCG10 co-express during early embryonic days in brain regions that undergo extensive neuronal migration. Our study revealed that selective inhibition of JNK in the cytoplasm significantly increased both the frequency of exit from the multipolar stage and radial migration rate. However, as a consequence, it led to ill-defined cellular organization. Furthermore, we found that multipolar exit and radial migration in Jnk1 deficient mice can be connected to changes in phosphorylation state of SCG10. Also, the expression of a pseudo-phosphorylated mutant form of SCG10, mimicking the JNK1- phopshorylated form, brings migration rate back to normal in Jnk1 knockout mouse embryos. Furthermore, we investigated the role of SCG10 and JNK in regulation of Golgi apparatus (GA) biogenesis and whether pathological JNK action could be discernible by its deregulation. We found that SCG10 maintains GA integrity as with the absence of SCG10 neurons present more compact fragmented GA structure, as shown by the knockdown approach. Interestingly, neurons isolated from Jnk1-/- mice show similar characteristics. Block of ER to GA is believed to be involved in development of Parkinson's disease. Hence, by using a pharmacological approach (Brefeldin A treatment), we showed that GA recovery is delayed upon removal of the drug in Jnk1-/- neurons to an extent similar to the shRNA SCG10-treated cells. Finally, we investigated the role of the JNK1-SCG10 duo in the maintenance of GA biogenesis following excitotoxic insult. Although the GA underwent fragmentation in response to NMDA treatment, we observed a substantial delay in GA disintegration in neurons lacking either JNK1 or SCG10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.