3 resultados para Oral epithelial dysplasia, Immunohistochemistry
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Oral lichen planus (OLP) is a chronic inflammatory mucosal disease and is detected in between 0.5% - 2.2% of the population. WHO has defined OLP as a potentially precancerous disorder, representing a generalized state associated with a significantly increased risk of cancer. However, only 0.5 – 2.9% of OLP lesions will progress to cancer. Currently, there are no prognostic markers to identify the lesions at increased risk for malignant transformation. The main aim of these studies was to identify cellular and molecular markers in order to understand the pathogenesis of atrophic OLP and its progression towards malignancy. Selected markers for cell proliferation, adhesion, apoptosis, and lymphocytic infiltration were assessed by immunohistochemistry in addition to static cytometry analyses for DNA content. DNA quantification of epithelial cells in 82 biopsy samples derived from atrophic lichen planus showed altered DNA content in 41% of the samples. DNA content was associated with proliferation activity, topoisomerase IIalpha, desmocollin-1 and infection with human papillomavirus. CD27+ and CD38+ lymphocytes were detected in inflammatory cell infiltrate, indicating an abnormal homing of B cells from blood circulation to tissue. Physiologic cell death, apoptosis, is frequently seen in OLP, but its pathways are unknown. Here it was shown that caspases 2 and 12 were up-regulated in OLP, indicating that intracellular apoptosis, rather than an external causal factor, is triggering apoptosis. However, this thesis could not identify any singular prognostic marker of malignancy in OLP. Thus, every OLP patient should receive regular follow-up care to identify cancer risk patients at an early stage.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Resumo:
The actin cytoskeleton is a dynamic structure that determines cell shape. Actin turnover is mandatory for migration in normal and malignant cells. In epithelial cancers invasion is frequently accompanied by epithelial to mesenchymal transition (EMT). In EMT, cancer cells acquire a migratory phenotype through transcriptional reprogramming. EMT requires substantial re-organization of actin. During the past decade, new actin regulating proteins have been discovered. Among these are members of the formin family. To study formin expression in tissues and cells, antibodies for detection of formin proteins FMNL1 (Formin-like protein 1), FMNL2 (Formin-like protein 2) and FHOD1 (Formin homology 2 domain containing protein 1) were used. The expression of formins was characterized in normal tissues and selected cancers using immunohistochemistry. The functional roles of formins were studied in cancer cell lines. We found that FMNL2 is widely expressed. It is a filopodial component in cultured melanoma cells. In clinical melanoma, FMNL2 expression has prognostic significance. FHOD1 is a formin expressed in mesenchymal cell types. FHOD1 expression is increased in oral squamous cell carcinoma (SCC) EMT. Importantly, FHOD1 participates in invasion of cultured oral SCC cells. FMNL1 expression is low in normal epithelia, but high in leukocytes and smooth muscle cells. Expression of FMNL1 can be found in carcinoma; we detected FMNL1 expressing cells in basal type of breast cancer. Our results indicate that formins are differentially expressed in normal tissues and that their expression may shift in cancer. Functionally FMNL2 and FHOD1 participate in processes related to cancer progression. Studying formins is increasingly important since they are potential drug targets.