6 resultados para Olfactory bulbs
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Luonnonvarojen ehtyminen ja ympäristön saastuminen on luonut kysyntää uusille, energiaa säästäville ja ympäristöystävällisille teknologioille. Valaistuksessa tällainen teknologia on led-tekniikka. Led-tekniikalla on useita etuja verrattuna kilpaileviin tekniikoihin kuten pitkä elinikä, ympäristöystävällisyys ja mekaaninen kestävyys. Ledejä käytetään nykyään laajalti erilaisissa erikoissovelluksissa, erityisesti jos vaatimuksena on valon värillisyys. Näihin päiviin asti ledien hinta ja heikko valontuotto ovat rajoittaneet led-valaisimien yleistymistä hehkulamppujen ja muiden valaisintyyppien korvaajina. Tekniikan nopea kehittyminen on tehnyt led-tekniikasta varteenotettavan vaihtoehdon myös yleisvalaistukseen. Uusimpien valkoisten ledien valotehokkuus on 2 - 5 -kertainen hehkulamppuun verrattuna. Led-tekniikassa on vielä paljon käyttämätöntä potentiaalia, tulevaisuudessa päästäneen 10 - 15 -kertaiseen valotehokkuuteen hehkulamppuun verrattuna. Työssä suunnitellaan mikrokontrolleripohjainen ohjausjärjestelmä valkoista valoa tuottavalle led-valaisimelle, jonka värisävyä ja kirkkautta käyttäjä voi säätää. Valkoinen valo synnytetään sekoittamalla neljän erivärisen led-rivin valoa. Mikrokontrolleri ohjaa kutakin led-riviä väriensekoitusteoriaan perustuen. Mikrokontrolleriohjaus huomioi myös ledien optisten ominaisuuksien muutokset lämpötilan suhteen. Mikrokontrolleriohjauksen suorituskyky todetaan käytännön mittauksilla.
Resumo:
Tässä työssä arvioidaan kotitalouksien energiansäästöpotentiaalia valaistuksen osalta Suomessa. Euroopan Unioni on ratifioinut päästövähennystavoitteen 20 % koskien kaikkia primäärienergiantuotantomuotoja. Päästövähennystavoite on tarkoitus toteuttaa vuoteen 2020 mennessä. Tässä kandidaatintyössä arvioidaan saavutettavissa olevaa energiansäästöpotentiaalia Suomessa kotitalouksissa laitesähkön osalta. Energiansäästöpotentiaalin arviointi perustuu hehkulampun korvaamismahdollisuuksien vertailuun. Valaistuksessa voidaan saavuttaa jopa 75 % sähkönsäästö, kun korvataan yksi 60 W hehkulamppu vastaavan valomäärän tuottavalla energiansäästölampulla. Kokonaisuudessa kotitalouksien valaistuksessa on tehostamispotentiaalia noin 60 %. Valaistuksen tehostamisella saavutetaan noin 1,5 TWh säästö Suomen kokonaissähkökulutuksessa. Saavutettavat säästöt voivat olla jopa suuremmatkin, jos käytetään lisäksi älykästä valonohjausta. Johtopäätöksenä voidaan todeta, että tehostamispotentiaalia on merkittävästi ja tehostaminen on yksittäiselle kotitaloudelle taloudellisesti kannattavaa. Energiansäästöpotentiaalin toteuttamisen vaikutuksia kansantalouteen ei ole arvioitu.
Resumo:
Olfactory packaging is an emerging technology which uses the aromatic capsules to release various scents. Normally, manufacturers add these aromatic capsules in the printing ink, the label or packaging material itself. When the aromatic capsules meet suitable release triggers, the scents will be released. The common release triggers are external forces, temperature changes, humidity changes and so on. The aim for this Masters of Science Thesis is to understand the aroma printing technology from literature and make market research for this kind of technology. The main target is to collect the current technology principle of aroma packaging and figure out how they are implemented on products with those. In addition, an investigation is made about consumers' attitudes from Chinese and Finnish market through the questionnaire, and the market potential is analyzed as well. The key points researched in this work are: the general attitudes on aroma printing technology, market potential and economic possibilities. This thesis specifies the main technologies used in aroma printing, the solutions of products with aroma packaging and the original results of the questionnaires. It also includes analysis of the acceptance of Chinese and Finnish consumers, what are their opinions of the aroma printing technology and the products packed by aroma printing technology. In addition, various factors which impact the market is discussed in the thesis. At last, some comparisons are made from the point of views of similarities and differences between Chinese and Finnish market.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.