9 resultados para OSTEOCLAST-LIKE CELLS

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spermatogenesis, i.e sperm production in the seminiferous tubules of the testis, is a complex process that takes over one month to complete. Life-long ability of sperm production ultimately lies in a small population of undifferentiated cells, called spermatogonial stem cells (SSCs). These cells give rise to differentiating spermatogonia, which are committed to mature into spermatozoa. SSCs represent a heterogeneous population of cells and many aspects of their basic biology are still unknown. Understanding the mechanisms behind the cell fate decision of these cells is important to gain more insights into the causes of infertility and testis cancer. In addition, an interesting new aspect is the use of testis-derived stem cells in regenerative medicine. Our data demonstrated that adult mouse testis houses a population of Nanog-expressing spermatogonia. Based on mRNA and protein analysis these cells are enriched in stage XII of the mouse seminiferous epithelial cycle. The cells derived from this stage have the highest capacity to give rise to ES cell-like cells which express Oct4 and Nanog. These cells are under tight non- GDNF regulation but their fate can be dictated by activating p21 signalling. Comparative studies suggested that these cells are regulated like ES cells. Taken together these data imply that pluripotent cells are present in the adult mammalian testis. CIP2A (cancerous inhibitor of PP2A) has been associated with tumour aggressiveness and poor prognosis. In the testis it is expressed by the descendants of stem cells, i.e. the spermatogonial progenitor cells. Our data suggest that CIP2A acts upstream of PLZF and is needed for quantitatively normal spermatogenesis. Classification of CIP2A as a cancer/testis gene makes it an attractive target for cancer therapy. Study on the CIP2A deficient mouse model demonstrates that systemic inhibition of CIP2A does not severely interfere with growth and development or tissue or organ function, except for the spermatogenic output. These data demonstrate that CIP2A is required for quantitatively normal spermatogenesis. Hedgehog (Hh) signalling is involved in the development and maintenance of many different tissues and organs. According to our data, Hh signalling is active at many different levels during rat spermatogenesis: in spermatogonia, spermatocytes and late elongating spermatids. Localization of Suppressor of Fused (SuFu), the negative regulator of the pathway, specifically in early elongating spermatids suggests that Hh signalling needs to be shut down in these cells. Introduction of Hh signalling inhibitor resulted in an increase in germ cell apoptosis. Follicle-stimulating hormone (FSH) and inhibition of receptor tyrosine kinases resulted in down-regulation of Hh signalling. These data show that Hh signalling is under endocrine and paracrine control and it promotes germ cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-testicular sperm maturation occurs in the epididymis. The ion concentration and proteins secreted into the epididymal lumen, together with testicular factors, are believed to be responsible for the maturation of spermatozoa. Disruption of the maturation of spermatozoa in the epididymis provides a promising strategy for generating a male contraceptive. However, little is known about the proteins involved. For drug development, it is also essential to have tools to study the function of these proteins in vitro. One approach for screening novel targets is to study the secretory products of the epididymis or the G protein-coupled receptors (GPCRs) that are involved in the maturation process of the spermatozoa. The modified Ca2+ imaging technique to monitor release from PC12 pheochromocytoma cells can also be applied to monitor secretory products involved in the maturational processes of spermatozoa. PC12 pheochromocytoma cells were chosen for evaluation of this technique as they release catecholamines from their cell body, thus behaving like endocrine secretory cells. The results of the study demonstrate that depolarisation of nerve growth factor -differentiated PC12 cells releases factors which activate nearby randomly distributed HEL erythroleukemia cells. Thus, during the release process, the ligands reach concentrations high enough to activate receptors even in cells some distance from the release site. This suggests that communication between randomly dispersed cells is possible even if the actual quantities of transmitter released are extremely small. The development of a novel method to analyse GPCR-dependent Ca2+ signalling in living slices of mouse caput epididymis is an additional tool for screening for drug targets. By this technique it was possible to analyse functional GPCRs in the epithelial cells of the ductus epididymis. The results revealed that, both P2X- and P2Y-type purinergic receptors are responsible for the rapid and transient Ca2+ signal detected in the epithelial cells of caput epididymides. Immunohistochemical and reverse transcriptase-polymerase chain reaction (RTPCR) analyses showed the expression of at least P2X1, P2X2, P2X4 and P2X7, and P2Y1 and P2Y2 receptors in the epididymis. Searching for epididymis-specific promoters for transgene delivery into the epididymis is of key importance for the development of specific models for drug development. We used EGFP as the reporter gene to identify proper promoters to deliver transgenes into the epithelial cells of the mouse epididymis in vivo. Our results revealed that the 5.0 kb murine Glutathione peroxidase 5 (GPX5) promoter can be used to target transgene expression into the epididymis while the 3.8 kb Cysteine-rich secretory protein-1 (CRISP-1) promoter can be used to target transgene expression into the testis. Although the visualisation of EGFP in living cells in culture usually poses few problems, the detection of EGFP in tissue sections can be more difficult because soluble EGFP molecules can be lost if the cell membrane is damaged by freezing, sectioning, or permeabilisation. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilise EGFP may also destroy its usefulness as a fluorescent reporter. We therefore developed a novel tissue preparation and preservation techniques for EGFP. In addition, fluorescence spectrophotometry with epididymal epithelial cells in suspension revealed the expression of functional purinergic, adrenergic, cholinergic and bradykinin receptors in these cell lines (mE-Cap27 and mE-Cap28). In conclusion, we developed new tools for studying the role of the epididymis in sperm maturation. We developed a new technique to analyse GPCR dependent Ca2+ signalling in living slices of mouse caput epididymis. In addition, we improved the method of detecting reporter gene expression. Furthermore, we characterised two epididymis-specific gene promoters, analysed the expression of GPCRs in epididymal epithelial cells and developed a novel technique for measurement of secretion from cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measles, caused by measles virus (MV), is a highly contagious viral disease causing severe respiratory infection and a typical rash. Despite the availability of a protective vaccine, measles is still the leading vaccine-preventable cause of childhood mortality worldwide. The high mortality associated with the disease is mainly due to an increased susceptibility to secondary infections during the period of immunosuppression that continues for several weeks after recovery. The present study was undertaken to elucidate the role of cytoskeletal components in the regulation of MV infection. The most interesting finding was that MV replication was activated in unstimulated peripheral blood mononuclear cells (PBMC) when globular actin was converted into the filamentous form with jasplakinolide. This provides a new aspect in our understanding of MV infection in PBMC. In the second part of the thesis we investigated MV-induced structural changes of cellular nuclear matrix, which is a proteinaceous framework of the nucleus similar to the cytoskeleton in the cytoplasm. We showed that cleavage of nuclear markers was virusspecific and a general caspase inhibitor rescued MV-infected cells from cell death. Furthermore, we studied MV-induced innate immune mechanisms in lung epithelial and endothelial cells. Our results showed that MV infection resulted in activation of the double stranded RNA (dsRNA) binding molecules melanoma differentiation-associated gene 5 (mda-5), retinoic acid inducible gene I (RIG-I), and toll-like receptor 3 (TLR3) gene expression, followed by high expression of antiviral cytokine mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During mitosis, the duplicated genome must be accurately divided between two daughter cells. Polo-like kinase 1 (Plk1) and Aurora B kinase, together with its binding partners Incenp, Survivin and Borealin (chromosomal passenger complex, CPC), have key roles in coordinating mitotic events. The accuracy of cell division is safeguarded by a signaling cascade termed the mitotic spindle checkpoint (SC), which ensures that chromosomes are not physically separated before correct bipolar attachments have been formed between kinetochores and spindle microtubules (MT). An inhibitory “wait anaphase” signal, which delays chromosome separation (anaphase onset), is created at individual kinetochores and broadcasted throughout the cell in response to lack of kinetochore-microtubule (kMT) attachment or proper interkinetochore tension. It is believed that the fast turnover of SC molecules at kinetochores contributes to the cell’s ability to produce this signal and enables rapid responses to changing cellular conditions. Kinetochores that lack MT attachment and tension express a certain phosphoepitope called the 3F3/2 phosphoepitope, which has been linked to SC signaling. In the experimental part, we investigated the regulation of the 3F3/2 phosphoepitope, analyzed whether CPC molecules turn over at centromeres, and dissected the mitotic roles of the CPC using a microinjection technique that allowed precise temporal control over its function. We found that the kinetochore 3F3/2 phosphoepitope is created by Plk1, and that CPC proteins exhibit constant exchange at centromeres. Moreover, we found that CPC function is necessary in the regulation of chromatid movements and spindle morphology in anaphase. In summary, we identified new functions of key mitotic regulators Plk1 and CPC, and provided insighs into the coordination of mitotic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (•O2 -), and hydroxyl radical (•OH). The most harmful of these compounds is •OH, which is only formed in cells in the presence of redox-cycling transition metals, such as iron and copper. Bacteria have developed a number of mechanisms to cope with ROS. One of the most widespread means employed by bacteria is the DNA-binding proteins from starved cells (Dps). Dps proteins protect the cells by binding and oxidizing Fe2+, thus greatly reducing the production of •OH. The oxidized iron is stored inside the protein as an iron core. In addition, Dps proteins bind directly to DNA forming a protective coating that shields DNA from harmful agents. Moreover, Dps proteins have been found to elicit other protective functions in cells and to participate in bacterial virulence. Dps proteins are of special importance to Streptococci owing to the lack of catalase in this genus of bacteria.This study was focused on structural and functional characterization of streptococcal Dpslike peroxide resistance (Dpr) proteins. Initially, crystal structures of Streptococcus pyogenes Dpr were determined. The data confirmed the presence of a di-metal ferroxidase center (FOC) in Dpr proteins and revealed the presence of a novel N-terminal helix as well as a surface metal-binding site. The crystal structures of Streptococcus suis Dpr complexed with transition metals demonstrated the metal specificity of the FOC. Solution binding studies also indicated the presence of a di-metal FOC. These results suggested a possible role for Dpr in the detoxification of various metals. Iron was found to mineralize inside the protein as ferrihydrite based on X-ray absorption spectroscopy data. The iron core was found to exhibit clear superparamagnetic behaviour using magnetic and Mössbauer measurements. The results from this study are expected to further increase our understanding on the binding, oxidation, and mineralization of iron and other metals in Dpr proteins. In particular, the structural and magnetic properties of the iron core can form a basis for potential new applications in nanotechnology. From the streptococcal viewpoint, the results would help in understanding better the complicated picture of bacterial pathogenesis. Dpr proteins may also provide a novel target for drug design due to their tight involvement in bacterial virulence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.