2 resultados para Nude

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrin family of transmembrane receptors are important for cell-matrix adhesion and signal transmission to the interior of the cell. Integrins are essential for many physiological processes and defective integrin function can consequently result in a multitude of diseases, including cancer. Integrin traffic is needed for completion of cytokinesis and cell division failure has been proposed to be an early event in the formation of chromosomally aberrant and transformed cells. Impaired integrin traffic and changes in integrin expression are known to promote invasion of malignant cells. However, the direct roles of impaired integrin traffic in tumorigenesis and increased integrin expression in oncogene driven invasion have not been examined. In this study we have investigated both of these aspects. We found that cells with reduced integrin endocytosis become binucleate and subsequently aneuploid. These aneuploid cells display characteristics of transformed cells; they are anchorage-independent, resistant to apoptosis and invasive in vitro. Importantly, subcutaneous injection of the aneuploid cells into athymic nude mice produced highly malignant tumors. Through gene expression profiling and analysis of integrin-triggered signaling pathways we have identified several molecules involved in the malignancy of these cells, including Src kinase and the transcription factor Twist2. Thus, even though chromosomal aberrations are associated with reduced cell fitness, we show that aneuploidy can facilitate tumor evolution and selection of transformed cells. Invasion and metastasis are the primary reason for deaths caused by cancer and the molecular pathways responsible for invasion are therefore attractive targets in cancer therapy. In addition to integrins, another major family of adhesion receptors are the proteoglycans syndecans. Integrins and syndecans are known to signal in a synergistic manner in controlling cell adhesion on 2D matrixes. Here we explored the role of syndecans as α2β1 integrin co-receptors in 3D collagen. We show that in breast cancer cells harbouring mutant K-Ras, increased levels of integrins, their co-receptors syndecans and matrix cleaving proteases are necessary for the invasive phenotype of these cells. Together, these findings increase our knowledge of the complicated changes that occur during tumorigenesis and the pathways that control the ability of cancer cells to invade and metastasize.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate cancer (PCa) is the most common non-cutaneous malignant disease among males in the developed countries. Radical prostatectomy (RP) is an effective therapy for most PCa patients with localized or locally invaded tumors but in some cases the cancer recurs after RP. PCa is a heterogeneous disease, which is regulated by many factors, such as androgen receptor (AR), estrogen receptors and  (ER and ER), fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, the role of ERβ, FGF8, FGF13 and FGFRL1 was investigated in PCa. Previous studies have suggested that ER is protective against PCa whereas FGF8 has been shown to induce PCa in transgenic mice. FGF13 and FGFRL1 are poorly understood members of the FGF and FGFR families, respectively. Transgenic mouse models were used to investigate the ability of inactivated ERβ to facilitate FGF8-induced prostate tumorigenesis. Human PCa tissue microarrays (TMAs) were used to study the expression pattern of FGF13 and FGFRL1 in PCa and the results were correlated to corresponding patient data. The targets and biological functions of FGF13 and FGFRL1 were characterized using experimental in vivo and in vitro models. The results show that deficiency of ERβ, which had been expected to have tumor suppressing capacity, seemed to influence epithelial differentiation but did not affect FGF8-induced prostate tumorigenesis. Analysis of the TMAs showed increased expression of FGF13 in PCa. The level of cytoplasmic FGF13 was associated with the PCa biochemical recurrence (BCR), demonstrated by increasing serum PSA value, and was able to act as an independent prognostic biomarker for PCa patients after RP. Expression of FGFRL1, the most recently identified FGFR, was also elevated in PCa. Cytoplasmic and nuclear FGFRL1 was associated with high Gleason score and Ki67 level whereas the opposite was true for the cell membrane FGFRL1. Silencing of FGFRL1 in PC-3M cells led to a strongly decreased growth rate of these cells as xenografts in nude mice and the experiments with PCa cell lines showed that FGFRL1 is able to modulate the FGF2- and FGF8-induced signaling pathways. The next generation sequencing (NGS) experiments with FGFRL1-silenced PC-3M cells revealed candidates for FGFRL1 target genes. In summary, these studies provide new data on the FGF/FGFR signaling pathways in normal and malignant prostate and suggest a potential role for FGF13 and FGFRL1 as novel prognostic markers for PCa patients. Keywords: FGF8, FGF13, FGFRL1, ERβ, prostate cancer, prognostic marker