3 resultados para Nuclear-localization Sequence

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adequate supply of oxygen is essential for the survival of multicellular organisms. However, in several conditions the supply of oxygen can be disturbed and the tissue oxygenation is compromised. This condition is termed hypoxia. Oxygen homeostasis is maintained by the regulation of both the use and delivery of oxygen through complex, sensitive and cell-type specific transcriptional responses to hypoxia. This is mainly achieved by one master regulator, a transcription factor called hypoxiainducible factor 1 (HIF-1). The amount of HIF-1 is under tight oxygen-dependent control by a family of oxygen-dependent prolyl hydroxylase domain proteins (PHDs) that function as the cellular oxygen sensors. Three family members (PHD1-3) are known to regulate HIF of which the PHD2 isoform is thought to be the main regulator of HIF-1. The supply of oxygen can be disturbed in pathophysiological conditions, such as ischemic disorders and cancer. Cancer cells in the hypoxic parts of the tumors exploit the ability of HIF-1 to turn on the mechanisms for their survival, resistance to treatment, and escape from the oxygen- and nutrient-deprived environment. In this study, the expression and regulation of PHD2 were studied in normal and cancerous tissues, and its significance in tumor growth. The results show that the expression of PHD2 is induced in hypoxic cells. It is overexpressed in head and neck squamous cell carcinomas and colon adenocarcinomas. Although PHD2 normally resides in the cytoplasm, nuclear translocation of PHD2 was also seen in a subset of tumor cells. Together with the overexpression, the nuclear localization correlated with the aggressiveness of the tumors. The nuclear localization of PHD2 caused an increase in the anchorage-independent growth of cancer cells. This study provides information on the role of PHD2, the main regulator of HIF expression, in cancer progression. This knowledge may prove to be valuable in targeting the HIF pathway in cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.