19 resultados para Nuclear and High Energy Physics

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reviews the role of nuclear and conventional power plants in the future energy system. The review is done by utilizing freely accesible publications in addition to generating load duration and ramping curves for Nordic energy system. As the aim of the future energy system is to reduce GHG-emissions and avoid further global warming, the need for flexible power generation increases with the increased share of intermittent renewables. The goal of this thesis is to offer extensive understanding of possibilities and restrictions that nuclear power and conventional power plants have regarding flexible and sustainable generation. As a conclusion, nuclear power is the only technology that is able to provide large scale GHG-free power output variations with good ramping values. Most of the currently operating plants are able to take part in load following as the requirement to do so is already required to be included in the plant design. Load duration and ramping curves produced prove that nuclear power is able to cover most of the annual generation variation and ramping needs in the Nordic energy system. From the conventional power generation methods, only biomass combustion can be considered GHG-free because biomass is considered carbon neutral. CFB combusted biomass has good load follow capabilities in good ramping and turndown ratios. All the other conventional power generation technologies generate GHG-emissions and therefore the use of these technologies should be reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: BL Lacs are the most numerous extragalactic objects which are detected in Very High Energy (VHE) gamma-rays band. They are a subclass of blazars. Large flux variability amplitude, sometimes happens in very short time scale, is a common characteristic of them. Significant optical polarization is another main characteristics of BL Lacs. BL Lacs' spectra have a continuous and featureless Spectral Energy Distribution (SED) which have two peaks. Among 1442 BL Lacs in the Roma-BZB catalogue, only 51 are detected in VHE gamma-rays band. BL Lacs are most numerous (more than 50% of 514 objects) objects among the sources that are detected above 10 GeV by FERMI-LAT. Therefore, many BL Lacs are expected to be discovered in VHE gamma-rays band. However, due to the limitation on current and near future technology of Imaging Air Cherenkov Telescope, astronomers are forced to predict whether an object emits VHE gamma-rays or not. Some VHE gamma-ray prediction methods are already introduced but still are not confirmed. Cross band correlations are the building blocks of introducing VHE gamma-rays prediction method. Aims: We will attempt to investigate cross band correlations between flux energy density, luminosity and spectral index of the sample. Also, we will check whether recently discovered MAGIC J2001+435 is a typical BL Lac. Methods: We select a sample of 42 TeV BL Lacs and collect 20 of their properties within five energy bands from literature and Tuorla blazar monitoring program database. All of the data are synchronized to be comparable to each other. Finally, we choose 55 pair of datasets for cross band correlations finding and investigating whether there is any correlation between each pair. For MAGIC J2001+435 we analyze the publicly available SWIFT-XRT data, and use the still unpublished VHE gamma-rays data from MAGIC collaboration. The results are compared to the other sources of the sample. Results: Low state luminosity of multiple detected VHE gamma-rays is strongly correlated luminosities in all other bands. However, the high state does not show such strong correlations. VHE gamma-rays single detected sources have similar behaviour to the low state of multiple detected ones. Finally, MAGIC J2001+435 is a typical TeV BL Lac. However, for some of the properties this source is located at the edge of the whole sample (e.g. in terms of X-rays flux). Keywords: BL Lac(s), Population study, Correlations finding, Multi wavelengths analysis, VHE gamma-rays, gamma-rays, X-rays, Optical, Radio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global demand for palm oil is growing, thus prompting an increase in the global production particularly in Malaysia and Indonesia. Such increasing demand for palm oil is due to palm oil’s relatively cheap price and versatile advantage both in edible and non-edible applications. Along with the increasing demand for palm oil, particularly for the production of biofuel, is a heated debate on its sustainability. Ecological degradation, climate change and social issues are among the main sustainability issues pressing the whole palm oil industry today. Clean Development Mechanism (CDM) projects fulfilling the imperatives of the Kyoto Protocol are starting to gain momentum in Malaysia as reflected by the increasing registration of CDM projects in the palm oil mills. Most CDM projects in palm oil mills are on waste-to-energy, cocomposting, and methane recovery with the latter being the most common. The study on greenhouse gases (GHG) in the milling process points that biogas collection and energy utilisation has the greatest positive effect on GHG balance. On the other hand, empty fruit bunches (EFB) end-use as energy and high energy efficiency of the mill have the least effect on GHG balance of the mill. The range of direct GHG emissions from the palm oil mill is from 2.5 to 27 gCO2e/MJCPO, while the range of GHG emissions with all indirect and avoided emissions included is from -9 to 29 gCO2e/MJCPO. Comparing this GHG balance result with that of the EU RES-Directive suggests a further check on the values and emissions consideration of the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state silicon detectors have replaced conventional ones in almost all recent high-energy physics experiments. Pixel silicon sensors don't have any alternative in the area near the interaction point because of their high resolution and fast operation speed. However, present detectors hardly withstand high radiation doses. Forthcoming upgrade of the LHC in 2014 requires development of a new generation of pixel detectors which will be able to operate under ten times increased luminosity. A planar fabrication technique has some physical limitations; an improvement of the radiation hardness will reduce sensitivity of a detector. In that case a 3D pixel detector seems to be the most promising device which can overcome these difficulties. The objective of this work was to model a structure of the 3D stripixel detector and to simulate electrical characteristics of the device. Silvaco Atlas software has been used for these purposes. The structures of single and double sided dual column detectors with active edges were described using special command language. Simulations of these detectors have shown that electric field inside an active area has more uniform distribution in comparison to the planar structure. A smaller interelectrode space leads to a stronger field and also decreases the collection time. This makes the new type of detectors more radiation resistant. Other discovered advantages are the lower full depletion voltage and increased charge collection efficiency. So the 3D stripixel detectors have demonstrated improved characteristics and will be a suitable replacement for the planar ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the recent years, development in mobile working machines has concentrated on reducing emissions owing to the tightening rules and needs to improve energy utilization and reduce power losses. This study focuses on energy utilization and regeneration in an electro-hydraulic forklift, which is a lifting equipment application. The study starts from the modelling and simulation of a hydraulic forklift. The energy regeneration from the potential energy of the load was studied. Also a flow-based electric motor speed control was suggested in this thesis instead of the throttle control method or the variable displacement pump control. Topics related to further development in the future are discussed. Finally, a summary and conclusions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RENSOL (Regional Energy Solutions) project deals with the use of energy efficiency and renewable energy solutions in Kaliningrad Oblast to tackle climate change. Overall objective of the RENSOL work package 1 is to build awareness and knowledge on solutions for energy efficient buildings and street lightning applications. The project report describes available solutions to improve housing energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Master’s Thesis is dedicated to the simulation of new p-type pixel strip detector with enhanced multiplication effect. It is done for high-energy physics experiments upgrade such as Super Large Hadron Collider especially for Compact Muon Solenoid particle track silicon detectors. These detectors are used in very harsh radiation environment and should have good radiation hardness. The device engineering technology for developing more radiation hard particle detectors is used for minimizing the radiation degradation. New detector structure with enhanced multiplication effect is proposed in this work. There are studies of electric field and electric charge distribution of conventional and new p-type detector under reverse voltage bias and irradiation. Finally, the dependence of the anode current from the applied cathode reverse voltage bias under irradiation is obtained in this Thesis. For simulation Silvaco Technology Computer Aided Design software was used. Athena was used for creation of doping profiles and device structures and Atlas was used for getting electrical characteristics of the studied devices. The program codes for this software are represented in Appendixes.