4 resultados para Network anomaly detection
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
This thesis studies techniques used for detection of distributed denial of service attacks which during last decade became one of the most serious network security threats. To evaluate different detection algorithms and further improve them we need to test their performance under conditions as close to real-life situations as possible. Currently the only feasible solution for large-scale tests is the simulated environment. The thesis describes implementation of recursive non-parametric CUSUM algorithm for detection of distributed denial of service attacks in ns-2 network simulator – a standard de-facto for network simulation.
Resumo:
Fraud is an increasing phenomenon as shown in many surveys carried out by leading international consulting companies in the last years. Despite the evolution of electronic payments and hacking techniques there is still a strong human component in fraud schemes. Conflict of interest in particular is the main contributing factor to the success of internal fraud. In such cases anomaly detection tools are not always the best instruments, since the fraud schemes are based on faking documents in a context dominated by lack of controls, and the perpetrators are those ones who should control possible irregularities. In the banking sector audit team experts can count only on their experience, whistle blowing and the reports sent by their inspectors. The Fraud Interactive Decision Expert System (FIDES), which is the core of this research, is a multi-agent system built to support auditors in evaluating suspicious behaviours and to speed up the evaluation process in order to detect or prevent fraud schemes. The system combines Think-map, Delphi method and Attack trees and it has been built around audit team experts and their needs. The output of FIDES is an attack tree, a tree-based diagram to ”systematically categorize the different ways in which a system can be attacked”. Once the attack tree is built, auditors can choose the path they perceive as more suitable and decide whether or not to start the investigation. The system is meant for use in the future to retrieve old cases in order to match them with new ones and find similarities. The retrieving features of the system will be useful to simplify the risk management phase, since similar countermeasures adopted for past cases might be useful for present ones. Even though FIDES has been built with the banking sector in mind, it can be applied in all those organisations, like insurance companies or public organizations, where anti-fraud activity is based on a central anti-fraud unit and a reporting system.
Resumo:
In this bachelor’s thesis are examined the benefits of current distortion detection device application in customer premises low voltage networks. The purpose of this study was to find out if there are benefits for measuring current distortion in low-voltage residential networks. Concluding into who can benefit from measuring the power quality. The research focuses on benefits based on the standardization in Europe and United States of America. In this research, were also given examples of appliances in which current distortion detection device could be used. Along with possible illustration of user interface for the device. The research was conducted as an analysis of the benefits of current distortion detection device in residential low voltage networks. The research was based on literature review. The study was divided to three sections. The first explain the reasons for benefitting from usage of the device and the second portrays the low-cost device, which could detect one-phase current distortion, in theory. The last section discuss of the benefits of usage of current distortion detection device while focusing on the beneficiaries. Based on the result of this research, there are benefits from usage to the current distortion detection device. The main benefitting party of the current distortion detection device was found to be manufactures, as they are held responsible of limiting the current distortion on behalf of consumers. Manufactures could adjust equipment to respond better to the distortion by having access to on-going current distortion in network. The other benefitting party are system operators, who would better locate distortion issues in low-voltage residential network to start prevention of long-term problems caused by current distortion early on.