20 resultados para Natural Sources of Ambient Noise,Localization and Tracking Systems
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The necessity of EC (Electronic Commerce) and enterprise systems integration is perceived from the integrated nature of enterprise systems. The proven benefits of EC to provide competitive advantages to the organizations force enterprises to adopt and integrate EC with their enterprise systems. Integration is a complex task to facilitate seamless flow of information and data between different systems within and across enterprises. Different systems have different platforms, thus to integrate systems with different platforms and infrastructures, integration technologies, such as middleware, SOA (Service-Oriented Architecture), ESB (Enterprise Service Bus), JCA (J2EE Connector Architecture), and B2B (Business-to-Business) integration standards are required. Huge software vendors, such as Oracle, IBM, Microsoft, and SAP suggest various solutions to address EC and enterprise systems integration problems. There are limited numbers of literature about the integration of EC and enterprise systems in detail. Most of the studies in this area have focused on the factors which influence the adoption of EC by enterprise or other studies provide limited information about a specific platform or integration methodology in general. Therefore, this thesis is conducted to cover the technical details of EC and enterprise systems integration and covers both the adoption factors and integration solutions. In this study, many literature was reviewed and different solutions were investigated. Different enterprise integration approaches as well as most popular integration technologies were investigated. Moreover, various methodologies of integrating EC and enterprise systems were studied in detail and different solutions were examined. In this study, the influential factors to adopt EC in enterprises were studied based on previous literature and categorized to technical, social, managerial, financial, and human resource factors. Moreover, integration technologies were categorized based on three levels of integration, which are data, application, and process. In addition, different integration approaches were identified and categorized based on their communication and platform. Also, different EC integration solutions were investigated and categorized based on the identified integration approaches. By considering different aspects of integration, this study is a great asset to the architectures, developers, and system integrators in order to integrate and adopt EC with enterprise systems.
Resumo:
Abstract
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
Low quality mine drainage from tailings facilities persists as one of the most significant global environmental concerns related to sulphide mining. Due to the large variation in geological and environmental conditions at mine sites, universal approaches to the management of mine drainage are not always applicable. Instead, site-specific knowledge of the geochemical behaviour of waste materials is required for the design and closure of the facilities. In this thesis, tailings-derived water contamination and factors causing the pollution were investigated in two coeval active sulphide mine sites in Finland: the Hitura Ni mine and the Luikonlahti Cu-Zn-Co-Ni mine and talc processing plant. A hydrogeochemical study was performed to characterise the tailingsderived water pollution at Hitura. Geochemical changes in the Hitura tailings were evaluated with a detailed mineralogical and geochemical investigation (solid-phase speciation, acid mine drainage potential, pore water chemistry) and using a spatial assessment to identify the mechanisms of water contamination. A similar spatial investigation, applying selective extractions, was carried out in the Luikonlahti tailings area for comparative purposes (Hitura low-sulphide tailings vs. Luikonlahti sulphide-rich tailings). At both sites, hydrogeochemistry of tailings seepage waters was further characterised to examine the net results of the processes observed within the impoundments and to identify constraints for water treatment. At Luikonlahti, annual and seasonal variation in effluent quality was evaluated based on a four-year monitoring period. Observations pertinent to future assessment and mine drainage prevention from existing and future tailings facilities were presented based on the results. A combination of hydrogeochemical approaches provided a means to delineate the tailings-derived neutral mine drainage at Hitura. Tailings effluents with elevated Ni, SO4 2- and Fe content had dispersed to the surrounding aquifer through a levelled-out esker and underneath the seepage collection ditches. In future mines, this could be avoided with additional basal liners in tailings impoundments where the permeability of the underlying Quaternary deposits is inadequate, and with sufficiently deep ditches. Based on the studies, extensive sulphide oxidation with subsequent metal release may already initiate during active tailings disposal. The intensity and onset of oxidation depended on e.g. the Fe sulphide content of the tailings, water saturation level, and time of exposure of fresh sulphide grains. Continuous disposal decreased sulphide weathering in the surface of low-sulphide tailings, but oxidation initiated if they were left uncovered after disposal ceased. In the sulphide-rich tailings, delayed burial of the unsaturated tailings had resulted in thick oxidized layers, despite the continuous operation. Sulphide weathering and contaminant release occurred also in the border zones. Based on the results, the prevention of sulphide oxidation should already be considered in the planning of tailings disposal, taking into account the border zones. Moreover, even lowsulphide tailings should be covered without delay after active disposal ceases. The quality of tailings effluents showed wide variation within a single impoundment and between the two different types of tailings facilities assessed. The affecting factors included source materials, the intensity of weathering of tailings and embankment materials along the seepage flow path, inputs from the process waters, the water retention time in tailings, and climatic seasonality. In addition, modifications to the tailings impoundment may markedly change the effluent quality. The wide variation in the tailings effluent quality poses challenges for treatment design. The final decision on water management requires quantification of the spatial and seasonal fluctuation at the site, taking into account changes resulting from the eventual closure of the impoundment. Overall, comprehensive hydrogeochemical mapping was deemed essential in the identification of critical contaminants and their sources at mine sites. Mineralogical analysis, selective extractions, and pore water analysis were a good combination of methods for studying the weathering of tailings and in evaluating metal mobility from the facilities. Selective extractions with visual observations and pH measurements of tailings solids were, nevertheless, adequate in describing the spatial distribution of sulphide oxidation in tailings impoundments. Seepage water chemistry provided additional data on geochemical processes in tailings and was necessary for defining constraints for water treatment.
Resumo:
Background: Celiac disease is a lifelong, gluten-sensitive, autoimmune-mediated chronic enteropathy, tightly associated with risk alleles at the HLA class II genes. Aims: This study was carried out as a part of the population-based Type 1 Diabetes Prediction and Prevention (DIPP) Project. The first aim was to study the natural history of celiac disease-associated antibodies before the diagnosis of celiac disease was made. The second aim was to describe when and in which order celiac disease-associated and type 1 diabetes-associated antibodies appeared in children with genetic risk for both diseases. Subjects and Methods: Antibodies against tissue transglutaminase (TGA) and other celiac disease-associated antibodies were measured in serum samples collected at 3- to 12-month intervals of children at genetic risk for celiac disease who participated in the DIPP project. Celiac disease was confirmed by duodenal biopsy. Type 1 diabetes-associated antibodies were measured in all samples that had been collected. Overt disease was diagnosed according to World Health Organization criteria. Follow-up continued until a diagnosis of type 1 diabetes or until the end of a defined follow-up period. Results: TGA appeared in children at genetic risk for celiac disease only after the first year of life, but anti-gliadin antibodies often emerged significantly earlier, at age 6 months. The data show that spontaneous disappearance of celiac disease-associated antibodies, transient or persisting, is a common phenomenon, at least in prepubertal children. In children with genetic susceptibility to type 1 diabetes and celiac disease, celiac disease-associated antibodies usually develop earlier than the type 1 diabetes-associated antibodies. Conclusions: The transient nature of celiac disease-associated antibodies emphasizes the significance of establishing seropositivity repeatedly in screening detected celiac disease before gastroscopy and duodenal biopsy are considered and emphasized the importance of duodenal biopsy for diagnosing celiac disease.
Resumo:
Added engraved title page: The history of Lapland.
Resumo:
This dissertation explores the use of internal and external sources of knowledge in modern innovation processes. It builds on a framework that combines theories such as a behavioural theory of the firm, the evolutionary theory of economic change, and modern approaches to strategic management. It follows the recent increase in innovation research focusing on the firm-level examination of innovative activities instead of traditional industry-level determinants. The innovation process is seen as a problem- and slack- driven search process, which can take several directions in terms of organizational boundaries in the pursuit of new knowledge and other resources. It thus draws on recent models of technological change, according to which firms nowadays should build their innovative activities on both internal and external sources of innovation rather than relying solely on internal resources. Four different research questions are addressed, all of which are empirically investigated via a rich dataset covering Finnish innovators collected by Statistics Finland. Firstly, the study examines how the nature of problems shapes the direction of any search for new knowledge. In general it demonstrates that the nature of the problem does affect the direction of the search, although under resource constraints firms tend to use external rather than internal sources of knowledge. At the same time, it shows that those firms that are constrained in terms of finance seem to search both internally and externally. Secondly, the dissertation investigates the relationships between different kinds of internal and external sources of knowledge in an attempt to find out where firms should direct their search in order to exploit the potential of a distributed innovation process. The concept of complementarities is applied in this context. The third research question concerns how the use of external knowledge sources – openness to external knowledge – influences the financial performance of firms. Given the many advantages of openness presented in the current literature, the focus is on how it shapes profitability. The results reveal a curvilinear relationship between profitability and openness (taking an inverted U-shape), the implication being that it pays to be open up to a certain point, but being too open to external sources may be detrimental to financial performance. Finally, the dissertation addresses some challenges in CISbased innovation research that have received relatively little attention in prior studies. The general aim is to underline the fact that comprehensive understanding of the complex process of technological change requires the constant development of methodological approaches (in terms of data and measures, for example). All the empirical analyses included in the dissertation are based on the Finnish CIS (Finnish Innovation Survey 1998-2000).
Resumo:
Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.