1 resultado para Nanostructure, Hydrothermal Synthesis, Catalyst, CO Oxidation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methanol is an important and versatile compound with various uses as a fuel and a feedstock chemical. Methanol is also a potential chemical energy carrier. Due to the fluctuating nature of renewable energy sources such as wind or solar, storage of energy is required to balance the varying supply and demand. Excess electrical energy generated at peak periods can be stored by using the energy in the production of chemical compounds. The conventional industrial production of methanol is based on the gas-phase synthesis from synthesis gas generated from fossil sources, primarily natural gas. Methanol can also be produced by hydrogenation of CO2. The production of methanol from CO2 captured from emission sources or even directly from the atmosphere would allow sustainable production based on a nearly limitless carbon source, while helping to reduce the increasing CO2 concentration in the atmosphere. Hydrogen for synthesis can be produced by electrolysis of water utilizing renewable electricity. A new liquid-phase methanol synthesis process has been proposed. In this process, a conventional methanol synthesis catalyst is mixed in suspension with a liquid alcohol solvent. The alcohol acts as a catalytic solvent by enabling a new reaction route, potentially allowing the synthesis of methanol at lower temperatures and pressures compared to conventional processes. For this thesis, the alcohol promoted liquid phase methanol synthesis process was tested at laboratory scale. Batch and semibatch reaction experiments were performed in an autoclave reactor, using a conventional Cu/ZnO catalyst and ethanol and 2-butanol as the alcoholic solvents. Experiments were performed at the pressure range of 30-60 bar and at temperatures of 160-200 °C. The productivity of methanol was found to increase with increasing pressure and temperature. In the studied process conditions a maximum volumetric productivity of 1.9 g of methanol per liter of solvent per hour was obtained, while the maximum catalyst specific productivity was found to be 40.2 g of methanol per kg of catalyst per hour. The productivity values are low compared to both industrial synthesis and to gas-phase synthesis from CO2. However, the reaction temperatures and pressures employed were lower compared to gas-phase processes. While the productivity is not high enough for large-scale industrial operation, the milder reaction conditions and simple operation could prove useful for small-scale operations. Finally, a preliminary design for an alcohol promoted, liquid-phase methanol synthesis process was created using the data obtained from the experiments. The demonstration scale process was scaled to an electrolyzer unit producing 1 Nm3 of hydrogen per hour. This Master’s thesis is closely connected to LUT REFLEX-platform.