6 resultados para NUCLEOTIDE-SEQUENCES

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Perunan somaattisten hybridien ja niiden somatohaploidien fluoresenssi in situ -hybridisaatio Solanum brevidens -lajin spesifisten sekvenssien avulla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing incidence of type 1 diabetes has led researchers on a quest to find the reason behind this phenomenon. The rate of increase is too great to be caused simply by changes in the genetic component, and many environmental factors are under investigation for their possible contribution. These studies require, however, the participation of those individuals most likely to develop the disease, and the approach chosen by many is to screen vast populations to find persons with increased genetic risk factors. The participating individuals are then followed for signs of disease development, and their exposure to suspected environmental factors is studied. The main purpose of this study was to find a suitable tool for easy and inexpensive screening of certain genetic risk markers for type 1 diabetes. The method should be applicable to using whole blood dried on sample collection cards as sample material, since the shipping and storage of samples in this format is preferred. However, the screening of vast sample libraries of extracted genomic DNA should also be possible, if such a need should arise, for example, when studying the effect of newly discovered genetic risk markers. The method developed in this study is based on homogeneous assay chemistry and an asymmetrical polymerase chain reaction (PCR). The generated singlestranded PCR product is probed by lanthanide-labelled, LNA (locked nucleic acid)-spiked, short oligonucleotides with exact complementary sequences. In the case of a perfect match, the probe is hybridised to the product. However, if even a single nucleotide difference occurs, the probe is bound instead of the PCR product to a complementary quencher-oligonucleotide labelled with a dabcyl-moiety, causing the signal of the lanthanide label to be quenched. The method was applied to the screening of the well-known type 1 diabetes risk alleles of the HLA-DQB1 gene. The method was shown to be suitable as an initial screening step including thousands of samples in the scheme used in the TEDDY (The Environmental Determinants of Diabetes in the Young) study to identify those individuals at increased genetic risk. The method was further developed into dry-reagent form to allow an even simpler approach to screening. The reagents needed in the assay were in dry format in the reaction vessel, and performing the assay required only the addition of the sample and, if necessary, water to rehydrate the reagents. This allows the assay to be successfully executed even by a person with minimal laboratory experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CBS domains are ~60 amino acid tandemly repeated regulatory modules forming a widely distributed domain superfamily. Found in thousands of proteins from all kingdoms of life, CBS domains have adopted a variety of functions during evolution, one of which is regulation of enzyme activity through binding of adenylate-containing compounds in a hydrophobic cavity. Mutations in human CBS domain-containing proteins cause hereditary diseases. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes, which pull pyrophosphate (PPi) producing reactions forward by hydrolyzing PPi into phosphate. Of the two nonhomologous soluble PPases, dimeric family II PPases, belonging to the DHH family of phosphoesterases, require a transition metal and magnesium for maximal activity. A quarter of the almost 500 family II PPases, found in bacteria and archaea, contain a 120-250 amino acid N-terminal insertion, comprised of two CBS domains separated in sequence by a DRTGG domain. These enzymes are thus named CBS-PPases. The function of the DRTGG domain in proteins is unknown. The aim of this PhD thesis was to elucidate the structural and functional differences of CBS-PPases in comparison to family II PPases lacking the regulatory insert. To this end, we expressed, purified and characterized the CBS-PPases from Clostridium perfringens (cpCBS-PPase) and Moorella thermoacetica (mtCBS-PPase), the latter lacking a DRTGG domain. Both enzymes are homodimers in solution and display maximal activity against PPi in the presence of Co2+ and Mg2+. Uniquely, the DRTGG domain was found to enable tripolyphosphate hydrolysis at rates similar to that of PPi. Additionally, we found that AMP and ADP inhibit, while ATP and AP4A activate CBSPPases, thus enabling regulation in response to changes in cellular energy status. We then observed substrate- and nucleotide-induced conformational transitions in mtCBS-PPase and found that the enzyme exists in two differentially active conformations, interconverted through substrate binding and resulting in a 2.5-fold enzyme activation. AMP binding was shown to produce an alternate conformation, which is reached through a different pathway than the substrate-induced conformation. We solved the structure of the regulatory insert from cpCBS-PPase in complex with AMP and AP4A and proposed that conformational changes in the loops connecting the catalytic and regulatory domains enable activity regulation. We examined the effects of mutations in the CBS domains of mtCBS-PPase on catalytic activity, as well as, nucleotide binding and inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of automatic recognition of the fish from the video sequences is discussed in this Master’s Thesis. This is a very urgent issue for many organizations engaged in fish farming in Finland and Russia because the process of automation control and counting of individual species is turning point in the industry. The difficulties and the specific features of the problem have been identified in order to find a solution and propose some recommendations for the components of the automated fish recognition system. Methods such as background subtraction, Kalman filtering and Viola-Jones method were implemented during this work for detection, tracking and estimation of fish parameters. Both the results of the experiments and the choice of the appropriate methods strongly depend on the quality and the type of a video which is used as an input data. Practical experiments have demonstrated that not all methods can produce good results for real data, whereas on synthetic data they operate satisfactorily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.