3 resultados para N-TRIDENTATE IRON(II)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Työssä tutkittiin moniarvoisten metalliformiaattien valmistusta ioninvaihto-menetelmällä. Kirjallisuustutkimus käsitteleetunnettuja alumiiniformiaatin ja rautaformiaatin valmistusmenetelmiä, kationinvaihtohartsien ominaisuuksia, ioninvaihtohartsien selektiivisyyttä ja alumiinin, raudan, magnesiumin ja sinkin vesikemiaa. Laboratoriokokeiden avulla tutkittiin sinkki-, magnesium-, rauta(II)- ja alumiiniformiaattien valmistusta ioninvaihdolla. Kokeet suoritettiin kolonnissa, joka oli pakattu makrohuokoisella tai geelimäisellä vahvalla kationin-vaihtohartsilla. Hartsi vaihdettiin natriummuodosta metallimuotoon metallikloridi- tai metallisulfaattiliuoksella.Metalli eluoitiin hartsista natriumformiaatilla. Formiaattien valmistus onnistui makrohuokoista vahvaa kationinvaihtohartsia käyttämällä. Rauta(II)formiaatin valmistus oli vaikeampaa kuin muiden formiaattien, koska rauta(II) hapettui osittain rauta(III):ksi valmistuksen aikana. Alumiiniformiaattia valmistettiin käyttäen sekä makrohuokoista että geelimäistä hartsia. Makrohuokoisen hartsin havaittiin soveltuvan geelimäistä hartsia paremmin alumiiniformiaatin valmistukseen. Kungeelimäistä hartsia käytettiin, noin 30 % alumiinista jäi kiinni hartsiin eikä siten eluoitunut. Ioninvaihdon selektiivisyyskertoimien saamiseksi suoritettiin tasapainokokeita. Selektiivisyyskertoimia käytettiin ioninvaihtokolonnin dynaamisessa simuloinnissa. Ioninvaihdon simuloiminen dynaamisella kolonnimallilla onnistui hyvin.
Resumo:
In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.
Resumo:
The quasiclassical approach was applied to the investigation of the vortex properties in the ironbased superconductors. The special attention was paid to manifestation of the nonlocal effects of the vortex core structure. The main results are as follows: (i) The effects of the pairing symmetries (s+ and s₊₊) on the cutoff parameter of field distribution, ξh, in stoichiometric (like LiFeAs) and nonstoichiometric (like doped BaFe₂As₂) iron pnictides have been investigated using Eilenberger quasiclassical equations. Magnetic field, temperature and impurity scattering dependences of ξh have been calculated. Two opposite behavior have been discovered. The ξh /ξc2 ratio is less in s+ symmetry when intraband impurity scattering (Γ₀) is much larger than one and much larger than interband impurity scattering (Γπ), i.e. in nonstoichiometric iron pnictides. Opposite, the value ξh /ξc2 is higher in s+ case and the field dependent curve is shifted upward from the "clean" case (Γ₀ = Γπ = 0) for stoichiometric iron pnictides (Γ₀ = Γπ ≪ 1). (ii) Eilenberger approach to the cutoff parameter, ξh, of the field distribution in the mixed state of high