9 resultados para Multiple-scale processing
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.
Resumo:
The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.
Resumo:
The aim of this master’s thesis is to research and analyze how purchase invoice processing can be automated and streamlined in a system renewal project. The impacts of workflow automation on invoice handling are studied by means of time, cost and quality aspects. Purchase invoice processing has a lot of potential for automation because of its labor-intensive and repetitive nature. As a case study combining both qualitative and quantitative methods, the topic is approached from a business process management point of view. The current process was first explored through interviews and workshop meetings to create a holistic understanding of the process at hand. Requirements for process streamlining were then researched focusing on specified vendors and their purchase invoices, which helped to identify the critical factors for successful invoice automation. To optimize the flow from invoice receipt to approval for payment, the invoice receiving process was outsourced and the automation functionalities of the new system utilized in invoice handling. The quality of invoice data and the need of simple structured purchase order (PO) invoices were emphasized in the system testing phase. Hence, consolidated invoices containing references to multiple PO or blanket release numbers should be simplified in order to use automated PO matching. With non-PO invoices, it is important to receive the buyer reference details in an applicable invoice data field so that automation rules could be created to route invoices to a review and approval flow. In the beginning of the project, invoice processing was seen ineffective both time- and cost-wise, and it required a lot of manual labor to carry out all tasks. In accordance with testing results, it was estimated that over half of the invoices could be automated within a year after system implementation. Processing times could be reduced remarkably, which would then result savings up to 40 % in annual processing costs. Due to several advancements in the purchase invoice process, business process quality could also be perceived as improved.
Resumo:
The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.
Resumo:
Middle ear infections (acute otitis media, AOM) are among the most common infectious diseases in childhood, their incidence being greatest at the age of 6–12 months. Approximately 10–30% of children undergo repetitive periods of AOM, referred to as recurrent acute otitis media (RAOM). Middle ear fluid during an AOM episode causes, on average, 20–30 dB of hearing loss lasting from a few days to as much as a couple of months. It is well known that even a mild permanent hearing loss has an effect on language development but so far there is no consensus regarding the consequences of RAOM on childhood language acquisition. The results of studies on middle ear infections and language development have been partly discrepant and the exact effects of RAOM on the developing central auditory nervous system are as yet unknown. This thesis aims to examine central auditory processing and speech production among 2-year-old children with RAOM. Event-related potentials (ERPs) extracted from electroencephalography can be used to objectively investigate the functioning of the central auditory nervous system. For the first time this thesis has utilized auditory ERPs to study sound encoding and preattentive auditory discrimination of speech stimuli, and neural mechanisms of involuntary auditory attention in children with RAOM. Furthermore, the level of phonological development was studied by investigating the number and the quality of consonants produced by these children. Acquisition of consonant phonemes, which are harder to hear than vowels, is a good indicator of the ability to form accurate memory representations of ambient language and has not been studied previously in Finnish-speaking children with RAOM. The results showed that the cortical sound encoding was intact but the preattentive auditory discrimination of multiple speech sound features was atypical in those children with RAOM. Furthermore, their neural mechanisms of auditory attention differed from those of their peers, thus indicating that children with RAOM are atypically sensitive to novel but meaningless sounds. The children with RAOM also produced fewer consonants than their controls. Noticeably, they had a delay in the acquisition of word-medial consonants and the Finnish phoneme /s/, which is acoustically challenging to perceive compared to the other Finnish phonemes. The findings indicate the immaturity of central auditory processing in the children with RAOM, and this might also emerge in speech production. This thesis also showed that the effects of RAOM on central auditory processing are long-lasting because the children had healthy ears at the time of the study. An effective neural network for speech sound processing is a basic requisite of language acquisition, and RAOM in early childhood should be considered as a risk factor for language development.
Resumo:
The overwhelming amount and unprecedented speed of publication in the biomedical domain make it difficult for life science researchers to acquire and maintain a broad view of the field and gather all information that would be relevant for their research. As a response to this problem, the BioNLP (Biomedical Natural Language Processing) community of researches has emerged and strives to assist life science researchers by developing modern natural language processing (NLP), information extraction (IE) and information retrieval (IR) methods that can be applied at large-scale, to scan the whole publicly available biomedical literature and extract and aggregate the information found within, while automatically normalizing the variability of natural language statements. Among different tasks, biomedical event extraction has received much attention within BioNLP community recently. Biomedical event extraction constitutes the identification of biological processes and interactions described in biomedical literature, and their representation as a set of recursive event structures. The 2009–2013 series of BioNLP Shared Tasks on Event Extraction have given raise to a number of event extraction systems, several of which have been applied at a large scale (the full set of PubMed abstracts and PubMed Central Open Access full text articles), leading to creation of massive biomedical event databases, each of which containing millions of events. Sinece top-ranking event extraction systems are based on machine-learning approach and are trained on the narrow-domain, carefully selected Shared Task training data, their performance drops when being faced with the topically highly varied PubMed and PubMed Central documents. Specifically, false-positive predictions by these systems lead to generation of incorrect biomolecular events which are spotted by the end-users. This thesis proposes a novel post-processing approach, utilizing a combination of supervised and unsupervised learning techniques, that can automatically identify and filter out a considerable proportion of incorrect events from large-scale event databases, thus increasing the general credibility of those databases. The second part of this thesis is dedicated to a system we developed for hypothesis generation from large-scale event databases, which is able to discover novel biomolecular interactions among genes/gene-products. We cast the hypothesis generation problem as a supervised network topology prediction, i.e predicting new edges in the network, as well as types and directions for these edges, utilizing a set of features that can be extracted from large biomedical event networks. Routine machine learning evaluation results, as well as manual evaluation results suggest that the problem is indeed learnable. This work won the Best Paper Award in The 5th International Symposium on Languages in Biology and Medicine (LBM 2013).
Resumo:
Current hearing-assistive technology performs poorly in noisy multi-talker conditions. The goal of this thesis was to establish the feasibility of using EEG to guide acoustic processing in such conditions. To attain this goal, this research developed a model via the constructive research method, relying on literature review. Several approaches have revealed improvements in the performance of hearing-assistive devices under multi-talker conditions, namely beamforming spatial filtering, model-based sparse coding shrinkage, and onset enhancement of the speech signal. Prior research has shown that electroencephalography (EEG) signals contain information that concerns whether the person is actively listening, what the listener is listening to, and where the attended sound source is. This thesis constructed a model for using EEG information to control beamforming, model-based sparse coding shrinkage, and onset enhancement of the speech signal. The purpose of this model is to propose a framework for using EEG signals to control sound processing to select a single talker in a noisy environment containing multiple talkers speaking simultaneously. On a theoretical level, the model showed that EEG can control acoustical processing. An analysis of the model identified a requirement for real-time processing and that the model inherits the computationally intensive properties of acoustical processing, although the model itself is low complexity placing a relatively small load on computational resources. A research priority is to develop a prototype that controls hearing-assistive devices with EEG. This thesis concludes highlighting challenges for future research.