31 resultados para Multiobjective Evolutionary Algorithm

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evoluutioalgoritmit ovat viime vuosina osoittautuneet tehokkaiksi menetelmiksi globaalien optimointitehtävien ratkaisuun. Niiden vahvuutena on etenkin yleiskäyttöisyys ja kyky löytää globaali ratkaisu juuttumatta optimoitavan tavoitefunktion paikallisiin optimikohtiin. Tässä työssä on tavoitteena kehittää uusi, normaalijakaumaan perustuva mutaatio-operaatio differentiaalievoluutioalgoritmiin, joka on eräs uusimmista evoluutiopohjaisista optimointialgoritmeista. Menetelmän oletetaan vähentävän entisestään sekä populaation ennenaikaisen suppenemisen, että algoritmin tilojen juuttumisen riskiä ja se on teoreettisesti osoitettavissa suppenevaksi. Tämä ei päde alkuperäisen differentiaalievoluution tapauksessa, koska on voitu osoittaa, että sen tilanmuutokset voivat pienellä todennäköisyydellä juuttua. Työssä uuden menetelmän toimintaa tarkastellaan kokeellisesti käyttäen testiongelmina monirajoiteongelmia. Rajoitefunktioiden käsittelyyn käytetään Jouni Lampisen kehittämää, Pareto-optimaalisuuden periaatteeseen perustuvaa menetelmää. Samalla saadaan kerättyä lisää kokeellista näyttöä myös tämän menetelmän toiminnasta. Kaikki käytetyt testiongelmat kyettiin ratkaisemaan sekä alkuperäisellä differentiaalievoluutiolla, että uutta mutaatio-operaatiota käyttävällä versiolla. Uusi menetelmä osoittautui kuitenkin luotettavammaksi sellaisissa tapauksissa, joissa alkuperäisellä algoritmilla oli vaikeuksia. Lisäksi useimmat ongelmat kyettiin ratkaisemaan luotettavasti pienemmällä populaation koolla kuin alkuperäistä differentiaalievoluutiota käytettäessä. Uuden menetelmän käyttö myös mahdollistaa paremmin sellaisten kontrolliparametrien käytön, joilla hausta saadaan rotaatioinvariantti. Laskennallisesti uusi menetelmä on hieman alkuperäistä differentiaalievoluutiota raskaampi ja se tarvitsee yhden kontrolliparametrin enemmän. Uusille kontrolliparametreille määritettiin kuitenkin mahdollisimman yleiskäyttöiset arvot, joita käyttämällä on mahdollista ratkaista suuri joukko erilaisia ongelmia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tässä työssä tutkitaan ohjelmistoarkkitehtuurisuunnitteluominaisuuksien vaikutusta erään client-server –arkkitehtuuriin perustuvan mobiilipalvelusovelluksen suunnittelu- ja toteutusaikaan. Kyseinen tutkimus perustuu reaalielämän projektiin, jonka kvalitatiivinen analyysi paljasti arkkitehtuurikompponenttien välisten kytkentöjen merkittävästi vaikuttavan projektin työmäärään. Työn päätavoite oli kvantitatiivisesti tutkia yllä mainitun havainnon oikeellisuus. Tavoitteen saavuttamiseksi suunniteltiin ohjelmistoarkkitehtuurisuunnittelun mittaristo kuvaamaan kyseisen järjestelmän alijärjestelmien arkkitehtuuria ja luotiin kaksi suunniteltua mittaristoa käyttävää, työmäärää (komponentin suunnittelu-, toteutus- ja testausaikojen summa) arvioivaa mallia, joista toinen on lineaarinen ja toinen epälineaarinen. Näiden mallien kertoimet sovitettiin optimoimalla niiden arvot epälineaarista gloobaalioptimointimenetelmää, differentiaalievoluutioalgoritmia, käyttäen, niin että mallien antamat arvot vastasivat parhaiten mitattua työmäärää sekä kaikilla ominaisuuksilla eli attribuuteilla että vain osalla niistä (yksi jätettiin vuorotellen pois). Kun arkkitehtuurikompenttien väliset kytkennät jätettiin malleista pois, mitattujen ja arvoitujen työmäärien välinen ero (ilmaistuna virheenä) kasvoi eräässä tapauksessa 367 % entisestä tarkoittaen sitä, että näin muodostettu malli vastasi toteutusaikoja huonosti annetulla ainestolla. Tämä oli suurin havaitu virhe kaikkien poisjätettyjen ominaisuuksien kesken. Saadun tuloksen perusteella päätettiin, että kyseisen järjestelmän toteutusajat ovat vahvasti riippuvaisia kytkentöjen määrästä, ja näin ollen kytkentöjen määrä oli mitä todennäköisemmin kaikista tärkein työmäärään vaikuttava tekijä tutkitun järjestelmän arkkitehtuurisuunnittelussa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diplomityössä esitetään menetelmä populaation monimuotoisuuden mittaamiseen liukulukukoodatuissa evoluutioalgoritmeissa, ja tarkastellaan kokeellisesti sen toimintaa. Evoluutioalgoritmit ovat populaatiopohjaisia menetelmiä, joilla pyritään ratkaisemaan optimointiongelmia. Evoluutioalgoritmeissa populaation monimuotoisuuden hallinta on välttämätöntä, jotta suoritettu haku olisi riittävän luotettavaa ja toisaalta riittävän nopeaa. Monimuotoisuuden mittaaminen on erityisen tarpeellista tutkittaessa evoluutioalgoritmien dynaamista käyttäytymistä. Työssä tarkastellaan haku- ja tavoitefunktioavaruuden monimuotoisuuden mittaamista. Toistaiseksi ei ole ollut olemassa täysin tyydyttäviä monimuotoisuuden mittareita, ja työn tavoitteena on kehittää yleiskäyttöinen menetelmä liukulukukoodattujen evoluutioalgoritmien suhteellisen ja absoluuttisen monimuotoisuuden mittaamiseen hakuavaruudessa. Kehitettyjen mittareiden toimintaa ja käyttökelpoisuutta tarkastellaan kokeellisesti ratkaisemalla optimointiongelmia differentiaalievoluutioalgoritmilla. Toteutettujen mittareiden toiminta perustuu keskihajontojen laskemiseen populaatiosta. Keskihajonnoille suoritetaan skaalaus, joko alkupopulaation tai nykyisen populaation suhteen, riippuen lasketaanko absoluuttista vai suhteellista monimuotoisuutta. Kokeellisessa tarkastelussa havaittiin kehitetyt mittarit toimiviksi ja käyttökelpoisiksi. Tavoitefunktion venyttäminen koordinaattiakseleiden suunnassa ei vaikuta mittarin toimintaan. Myöskään tavoitefunktion kiertäminen koordinaatistossa ei vaikuta mittareiden tuloksiin. Esitetyn menetelmän aikakompleksisuus riippuu lineaarisesti populaation koosta, ja mittarin toiminta on siten nopeaa suuriakin populaatioita käytettäessä. Suhteellinen monimuotoisuus antaa vertailukelpoisia tuloksia riippumatta parametrien lukumäärästä tai populaation koosta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työssä pyrittiin etsimään differentiaalievoluutioalgoritmilla kaksiakseliselle, välijäähdytyksellä, välipoltolla ja rekuperaattorilla varustetulle mikrokaasuturbiinille sellaiset kompressorien painesuhteet ja rekuperaattorin rekuperaatioaste, että saavutettaisiin mandollisimman hyvä osakuormahyötysuhteen säilyvyys. Osakuormatehon säätömenetelmäksi oli valittu pyörimisnopeussäädön ja turbiinien sisääntulolämpötilan alentamisen yhdistelmä, jossa generaattorilla varustetun akselin pyörimisnopeus sekä molempien turbiinien sisääntulolämpötilat olivat toisistaan riippumatta vapaasti säädettävissä. Työssä löydettiin optimaalinen säätömenetelmien yhdistelmä, jolla saavutetaan parempi osakuormahyötysuhteen säilyvyys, kuin millään käytetyistä menetelmistä yksinään. Lisäksi havaittiin, ettei optimaalinen säätömenetelmä merkittävästi riipu koneikolle valituista suunnittelupisteen parametreista. Osakuormahyötysuhteen säilyvyyden kannalta optimaalinen koneikko ei merkittävästi poikennut suunnittelupisteen hyötysuhteen kannalta optimaalisesta.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, different genetic tools are used to investigate both natural variation and speciation in the Ficedula flycatcher system: pied (Ficedula hypoleuca) and collared (F. albicollis) flycatchers. The molecular evolution of a gene involved in postnatal body growth, GH, has shown high degree of conservation at the mature protein between birds and mammals, whereas the variation observed in its signal peptide seems to be adaptive in pied flycatcher (I & II). Speciation is the process by which reproductive barriers to gene flow evolve between populations, and understanding the mechanisms involved in pre- and post-zygotic isolation have been investigated in Ficedula flycatchers. The Z chromosome have been suggested to be the hotspot for genes involved in speciation, thus sequencing of 13 Z-linked coding genes from the two species in allopatry and sympatry have been conducted (III). Surprisingly, the majority of Z-linked genes seemed to be highly conserved, suggesting instead a potential involvement of regulatory regions. Previous studies have shown that genes involved in hybrid fitness, female preferences and male plumage colouration are sex-linked. Hence, three pigmentation genes have been investigated: MC1R, AGRP, and TYRP1. Of these three genes, TYRP1 was identified as a strong candidate to be associated with black-brown plumage variation in sympatric populations, and hence is a strong candidate for a gene contributing to pre-zygotic isolation (IV). In sympatric areas, where pied and collared flycatchers have overlapping breeding areas, hybridization sometimes occurs leading to the production of unfit hybrids. By using a proteomic approach a novel expression pattern in hybrids was revealed compared to the parental species (V) and differentially expressed proteins subsequently identified by sequence similarity (VI). In conclusion, the Z chromosome appears to play an important role in flycatcher speciation, but probably not at the coding level. In addition the novel expression patterns might give new insights into the maladaptive hybrids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative relation to Pareto-dominance relation is proposed. The new relation is based on ranking a set of solutions according to each separate objective and an aggregation function to calculate a scalar fitness value for each solution. The relation is called as ranking-dominance and it tries to tackle the curse of dimensionality commonly observedin evolutionary multi-objective optimization. Ranking-dominance can beused to sort a set of solutions even for a large number of objectives when Pareto-dominance relation cannot distinguish solutions from one another anymore. This permits search to advance even with a large number of objectives. It is also shown that ranking-dominance does not violate Pareto-dominance. Results indicate that selection based on ranking-dominance is able to advance search towards the Pareto-front in some cases, where selection based on Pareto-dominance stagnates. However, in some cases it is also possible that search does not proceed into direction of Pareto-front because the ranking-dominance relation permits deterioration of individual objectives. Results also show that when the number of objectives increases, selection based on just Pareto-dominance without diversity maintenance is able to advance search better than with diversity maintenance. Therefore, diversity maintenance is connive at the curse of dimensionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tässä diplomityössä määritellään varmistusjärjestelmän simulointimalli eli varmistusmalli. Varmistusjärjestelmän toiminta optimoidaan kyseisen varmistusmallin avulla. Optimoinnin tavoitteena on parantaa varmistusjärjestelmän tehokkuutta. Parannusta etsitään olemassa olevien varmistusjärjestelmän resurssien maksimaalisella hyödyntämisellä. Varmistusmalli optimoidaan evoluutioalgoritmin avulla. Optimoinnissa on useita tavoitteita, jotka ovat ristiriidassa keskenään. Monitavoiteoptimointiongelma muunnetaan yhden tavoitteen optimointiongelmaksi muodostamalla tavoitefunktio painotetun summan menetelmän avulla. Rinnakkain edellisen menetelmän kanssa käytetään myös Pareto-optimointia. Pareto-optimaalisen rintaman pisteiden etsintä ohjataan lähelle painotetun summan menetelmän optimipistettä. Evoluutioalgoritmin toteutuksessa käytetään hyväksi varmistusjärjestelmiin liittyvää ongelmakohtaista tietoa. Työn tuloksena saadaan varmistusjärjestelmän simulointi- sekä optimointityökalu. Simulointityökalua käytetään kartoittamaan nykyisen varmistusjärjestelmän toimivuutta. Optimoinnin avulla tehostetaan varmistusjärjestelmän toimintaa. Työkalua voidaan käyttää myös uusien varmistusjärjestelmien suunnittelussa sekä nykyisten varmistusjärjestelmien laajentamisessa.