6 resultados para Multiaxial Stress State

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä tutkittiin kuinka eri tavoin rakenteen mallintaminen vaikuttaa laskettuun väsy-misikään. Työssä tutkittavana rakenteena toimi Sandvik Mining and Construction OY:n las-tauskoneen nostovarsi. Nostovarrelle väsytyskokeet suoritettiin Lappeenrannan teknillisen yliopiston teräsrakenteiden laboratoriossa. Työn tavoitteena oli tutkia miten eri digitaalinen valmistuksen tasot vaikuttavat hitsatulle rakenteelle saatuun kestoikään. Työssä tutkittiin myös miten todellista geometriaa voidaan hyödyntää rakenteen kestoiän arvioinnissa. Väsytyskoejärjestely mallinnettiin FE-menetelmällä, ja järjestelystä tehtiin useita malleja käyttäen solidi- ja laattaelementtejä. Malleista laskettiin väsymisiät hot spot- ja tehollisen lovijännityksen menetelmällä, ja saatuja tuloksia vertailtiin toisiinsa ja väsytyskokeen tulok-siin. Väsytyskokeessa vaurioituneista kohdista tarkemman tutkimuksen kohteena oli nosto-varren palstalevyn kärki. Hot spot-menetelmällä saadut kestoiät vaihtelivat paikoin melko paljon eri mallien välillä. Tehollisen lovijännityksen menetelmällä saaduissa tuloksissa erot olivat pienempiä mallien välillä. FE-mallin ja venymäliuskojen jännitykset poikkesivat toisistaan paikoin melko pal-jon. Todellisen hitsatun rakenteen kestoikään vaikuttaa moni asia, ja täten FE-menetelmällä las-kettu kestoikä voi poiketa huomattavasti todellisesta kestoiästä. Varsinkin hot spot-menetel-mällä tulokset voivat poiketa hyvinkin paljon todellisuudesta, mikäli jännitystila tutkitta-vassa kohdassa on moniaksiaalinen. Todellisen geometrian mallintaminen vaatii tarkkuutta, ja alkuperäisdatan tulee olla mahdollisimman tarkkaa ja riittävän suurelta alueelta, jotta malli vastaa tarpeeksi todellista.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatigue life assessment of weldedstructures is commonly based on the nominal stress method, but more flexible and accurate methods have been introduced. In general, the assessment accuracy is improved as more localized information about the weld is incorporated. The structural hot spot stress method includes the influence of macro geometric effects and structural discontinuities on the design stress but excludes the local features of the weld. In this thesis, the limitations of the structural hot spot stress method are discussed and a modified structural stress method with improved accuracy is developed and verified for selected welded details. The fatigue life of structures in the as-welded state consists mainly of crack growth from pre-existing cracks or defects. Crack growth rate depends on crack geometry and the stress state on the crack face plane. This means that the stress level and shape of the stress distribution in the assumed crack path governs thetotal fatigue life. In many structural details the stress distribution is similar and adequate fatigue life estimates can be obtained just by adjusting the stress level based on a single stress value, i.e., the structural hot spot stress. There are, however, cases for which the structural stress approach is less appropriate because the stress distribution differs significantly from the more common cases. Plate edge attachments and plates on elastic foundations are some examples of structures with this type of stress distribution. The importance of fillet weld size and weld load variation on the stress distribution is another central topic in this thesis. Structural hot spot stress determination is generally based on a procedure that involves extrapolation of plate surface stresses. Other possibilities for determining the structural hot spot stress is to extrapolate stresses through the thickness at the weld toe or to use Dong's method which includes through-thickness extrapolation at some distance from the weld toe. Both of these latter methods are less sensitive to the FE mesh used. Structural stress based on surface extrapolation is sensitive to the extrapolation points selected and to the FE mesh used near these points. Rules for proper meshing, however, are well defined and not difficult to apply. To improve the accuracy of the traditional structural hot spot stress, a multi-linear stress distribution is introduced. The magnitude of the weld toe stress after linearization is dependent on the weld size, weld load and plate thickness. Simple equations have been derived by comparing assessment results based on the local linear stress distribution and LEFM based calculations. The proposed method is called the modified structural stress method (MSHS) since the structural hot spot stress (SHS) value is corrected using information on weld size andweld load. The correction procedure is verified using fatigue test results found in the literature. Also, a test case was conducted comparing the proposed method with other local fatigue assessment methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to functional requirement of a structural detail brackets with and without scallop are frequently used in bridges, decks, ships and offshore structure. Scallops are designed to serve as passage way for fluids, to reduce weld length and plate distortions. Moreover, scallops are used to avoid intersection of two or more welds for the fact that there is the presence of inventible inherent initial crack except for full penetrated weld and the formation of multi-axial stress state at the weld intersection. Welding all around the scallop corner increase the possibility of brittle fracture even for the case the bracket is not loaded by primary load. Avoiding of scallop will establish an initial crack in the corner if bracket is welded by fillet welds. If the two weld run pass had crossed, this would have given a 3D residual stress situation. Therefore the presences and absence of scallop necessitates the 3D FEA fatigue resistance of both types of brackets using effective notch stress approach ( ). FEMAP 10.1 with NX NASTRAN was used for the 3D FEA. The first and main objective of this research was to investigate and compare the fatigue resistance of brackets with and without scallop. The secondary goal was the fatigue design of scallops in case they cannot be avoided for some reason. The fatigue resistance for both types of brackets was determined based on approach using 1 mm fictitiously rounded radius based on IIW recommendation. Identical geometrical, boundary and loading conditions were used for the determination and comparison of fatigue resistance of both types of brackets using linear 3D FEA. Moreover the size effect of bracket length was also studied using 2D SHELL element FEA. In the case of brackets with scallop the flange plate weld toe at the corner of the scallop was found to exhibit the highest and made the flange plate weld toe critical for fatigue failure. Whereas weld root and weld toe at the weld intersections were the highly stressed location for brackets without scallop. Thus weld toe for brackets with scallop, and weld root and weld toe for brackets without scallop were found to be the critical area for fatigue failure. Employing identical parameters on both types of brackets, brackets without scallop had the highest except for full penetrated weld. Furthermore the fatigue resistance of brackets without scallop was highly affected by the lack of weld penetration length and it was found out that decreased as the weld penetration was increased. Despite the fact that the very presence of scallop reduces the stiffness and also same time induce stress concentration, based on the 3D FEA it is worth concluding that using scallop provided better fatigue resistance when both types of brackets were fillet welded. However brackets without scallop had the highest fatigue resistance when full penetration weld was used. This thesis also showed that weld toe for brackets with scallop was the only highly stressed area unlike brackets without scallop in which both weld toe and weld root were the critical locations for fatigue failure when different types of boundary conditions were used. Weld throat thickness, plate thickness, scallop radius, lack of weld penetration length, boundary condition and weld quality affected the fatigue resistance of both types of brackets. And as a result, bracket design procedure, especially welding quality and post weld treatment techniques significantly affect the fatigue resistance of both type of brackets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress is a phenomenon that on some level affects everyone’s lives on a daily basis. The autonomic nervous system controls the varying levels of stress at any given time. The responses of the autonomic nervous system adjust the body to cope with changing external and internal conditions. During high-stress situations the body is forced into a state of heightened alertness, which passes when the stressor is removed. The stressor can be any external or internal event that causes the body to respond. Stress is a very versatile phenomenon that can be both a cause and an indicator of other medical conditions, for example cardiovascular disease. Stress detection can therefore be helpful in identifying these conditions and monitoring the overall emotional state of a person. Electrodermal activity (EDA) is one of the most easily implemented ways to monitor the activity of the autonomic nervous system. EDA describes changes occurring in the various electrical properties of the skin, including skin conductivity and resistance. Increased emotional sweating has been proven to be one possible indication of stress. On the surface of the skin, increased sweating translates to increased skin conductivity, which can be observed through EDA measurements. This makes electrodermal activity a very useful tool in a wide range of applications where it is desirable to observe changes in a person’s stress level. EDA can be recorded by using specialized body sensors placed on specific locations on the body. Most commonly used recording sites are the palms of the hands due to the high sweat gland density on those areas. Measurement is done using at least two electrodes attached to the skin, and recording the electrical conductance between them. This thesis implements a prototype of a wireless EDA measurement system. The feasibility of the prototype is also verified with a small group of test subjects. EDA was recorded from the subjects while they were playing a game of Tetris. The goal was to observe variations in the measured EDA that would indicate changes in the subjects’ stress levels during the game. The analysis of the obtained measurement results confirmed the connection between stress and recorded EDA. During the game, random occurrences of lowered skin resistance were clearly observable, which indicates points in the game where the player felt more anxious. A wireless measurement system has the potential of offering more flexible and comfortable long-term measuring of EDA, and could be utilized in a wide range of applications.