15 resultados para Multi-layer devices
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Resumo:
The markets of biomass for energy are developing rapidly and becoming more international. A remarkable increase in the use of biomass for energy needs parallel and positive development in several areas, and there will be plenty of challenges to overcome. The main objective of the study was to clarify the alternative future scenarios for the international biomass market until the year 2020, and based on the scenario process, to identify underlying steps needed towards the vital working and sustainable biomass market for energy purposes. Two scenario processes were conducted for this study. The first was carried out with a group of Finnish experts and thesecond involved an international group. A heuristic, semi-structured approach, including the use of preliminary questionnaires as well as manual and computerised group support systems (GSS), was applied in the scenario processes.The scenario processes reinforced the picture of the future of international biomass and bioenergy markets as a complex and multi-layer subject. The scenarios estimated that the biomass market will develop and grow rapidly as well as diversify in the future. The results of the scenario process also opened up new discussion and provided new information and collective views of experts for the purposes of policy makers. An overall view resulting from this scenario analysis are the enormous opportunities relating to the utilisation of biomass as a resource for global energy use in the coming decades. The scenario analysis shows the key issues in the field: global economic growth including the growing need for energy, environmental forces in the global evolution, possibilities of technological development to solve global problems, capabilities of the international community to find solutions for global issues and the complex interdependencies of all these driving forces. The results of the scenario processes provide a starting point for further research analysing the technological and commercial aspects related the scenarios and foreseeing the scales and directions of biomass streams.
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
Suomen ilmatilaa valvotaan reaaliaikaisesti, pääasiassa ilmavalvontatutkilla. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka tutka havaitsee. Tutka lähettää nämä tiedot edelleen ilmavalvontajärjestelmään. Ilmavalvontajärjestelmä käsittelee tiedot, sekä lähettää ne edelleen esitysjärjestelmään. Esitysjärjestelmässä tiedot esitetään synteettisinä merkkeinä, seurantoina joista käytetään nimitystä träkki. Näiden tietojen puitteissa sekä oman ammattitaitonsa perusteella ihmiset tekevät päätöksiä. Tämän työn tarkoituksena on tutkia tutkan havaintoja träkkien initialisointipisteessä siten, että voitaisiin määritellä tyypillinen rakenne sille mikä on oikea ja mikä väärä tai huono träkki. Tämän lisäksi tulisi ennustaa, mitkä Irakeista eivät aiheudu ilma- aluksista. Saadut tulokset voivat helpottaa työtä havaintojen tulkinnassa - jokainen lintuparvi ei ole ehdokas seurannaksi. Havaintojen luokittelu voidaan tehdä joko neurolaskennalla tai päätöspuulla. Neurolaskenta tehdään neuroverkoilla, jotka koostuvat neuroneista. Päätöspuu- luokittelijat ovat oppivia tietorakenteita kuten neuroverkotkin. Yleisin päätöpuu on binääripuu. Tämän työn tavoitteena on opettaa päätöspuuluokittelija havaintojen avulla siten, että se pystyy luokittelemaan väärät havainnot oikeista. Neurolaskennan mahdollisuuksia tässä työssä ei käsitellä kuin teoreettisesti. Työn tuloksena voi todeta, että päätöspuuluokittelijat ovat erittäin kykeneviä erottamaan oikeat havainnot vääristä. Vaikka tulokset olivat rohkaiseva, lisää tutkimusta tarvitaan määrittelemään luotettavammin tekijät, jotka parhaiten suorittavat luokittelun.
Resumo:
Työn tavoitteena on selvittää voidaanko neuroverkkoa käyttää mallintamaan ja ennustamaan polttoaineen vaikutusta nykyaikaisen auton päästöihin. Näin pystyttäisiin vähentämään aikaa vievien ja kalliiden koeajojen tarvetta. Työ tehtiin Lappeenrannan teknillisen yliopiston ja Fortum Oy:n yhteistyöprojektissa. Työssä tehtiin kolme erilaista mallia. Ensimmäisenä tehtiin autokohtainen malli, jolla pyrittiin ennustamaan autokohtaista käyttäytymistä. Toiseksi kokeiltiin mallia, jossa automalli oli yhtenä syötteenä. Kolmantena yritettiin kiertää eräitä aineiston ongelmia käyttämällä "sumeutettuja" polttoaineiden koostumuksia. Työssä käytettiin MLP-neuroverkkoa, joka opetettiin backpropagation algoritmilla. Työssä havaittiin ettei käytettävissä olleella aineistolla ja käytetyillä malleilla pystytä riittävällä tarkkuudella mallintamaan polttoaineen vaikutusta päästöihin. Aineiston ongelmia olivat mm. suuret mittausvarianssit, aineiston pieni määrä sekä aineiston soveltumattomuus neuroverkolla mallintamiseen.
Resumo:
Työn tavoitteena oli kehittää prosessia fraktioinnista monikerrosperälaatikolle painopaperilajeilla. Tarkoituksena oli selvittää koeajojen avulla sihti- ja pyörrepuhdistusfraktioinnin soveltuvuutta paperin kerrostuksen kannalta. Työssä vertailtiin keskenään fraktiointimenetelmiä ja niiden yhdistelmiä. Tehtävänä oli prosessikonseptin kehittäminen eri prosessikytkennöistä ja –ratkaisuista simuloinnin avulla. Kirjallisuusosassa tutustuttiin analysoiden kirjallisuusviitteiden perusteella massan fraktiointiin ja paperin kerrostamiseen sekä fraktiointikerrostetun rainan karakterisointiin. Tavoitteiden saavuttamiseksi esikokeena suoritettiin pilotkoeajo hienopaperimassalla, jossa tutkittiin pääasiassa fraktiointitulosta. Toinen koeajo suoritettiin LWC-paperilla, jossa koekonekonsepti oli optimaalisempi kerrostuksen kannalta ja fraktiointitulos voitiin linkittää paperin laatusuureisiin. LWC-koeajossa fraktioidulla massalla tehtiin laboratoriomittakaavassa monikerrosarkkimuottikokeita, joiden tuloksilla pyrittiin vahvistamaan koeajosta saatuja tuloksia ja fraktioinnnin potentialia. Prosessikonseptin kehittämiseksi rakennettiin seitsemän simulointimallia eri kytkennöistä. Malleja verrattiin keskenään täyteaine- ja kuitujakeiden fraktiointikyvyn perusteella. Koeajojen avulla selvitettiin fraktioinnin kannalta optimaaliset prosessimuuttujat. Fraktiointikerrostuksella parannettiin paperin z-suuntaista lujuutta ja etenkin pyörrepuhdistinfraktioinnilla pintojen sileyttä. Fraktiointikerrostuksella voitiin parantaa paperin täyteainejakaumaa. Kokeiden perusteella huomattiin, että kukin paperilaji tarvitsee erilaisen fraktiointijärjestelyn riippuen käytetystä massasta ja täyteaineesta.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Three-dimensional (3D) forming of paperboard and heat sealing of lidding films to trays manufactured by the press forming process are investigated in this thesis. The aim of the work was to investigate and recognize the factors affecting the quality of heat sealing and the leak resistance (tightness) of press-formed, polymer-coated paperboard trays heatsealed with a multi-layer polymer based lidding film. One target was to achieve a solution that can be used in food packaging using modified atmosphere packaging (MAP). The main challenge in acquiring adequate tightness properties for the use of MAP is creases in the sealing area of the paperboard trays which can act as capillary tubes and prevent leak-proof sealing. Several experiments were made to investigate the effect of different factors and process parameters in the forming and sealing processes. Also different methods of analysis, such as microscopic analysis and 3D-profilometry were used to investigate the structure of the creases in the sealing area, and to analyse the surface characteristics of the tray flange of the formed trays to define quality that can be sealed with satisfactory tightness for the use of MAP. The main factors and parameters that had an effect on the result of leak-proof sealing and must be adjusted accordingly were the tray geometry and dimensions, blank holding force in press forming, surface roughness of the sealing area, the geometry and depth of the creases, and the sealing pressure. The results show that the quality of press-formed, polymer-coated paperboard trays and multi-layer polymer lidding films can be satisfactory for the use of modified atmosphere packaging in food solutions. Suitable tools, materials, and process parameters have to be selected and used during the tray manufacturing process and lid sealing process, however. Utilizing these solutions and results makes it possible for a package that is made mostly from renewable and recyclable sources to be a considerable alternative for packages made completely from oil based polymers, and to achieve a greater market share for fibre-based solutions in food packaging using MAP.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.
Resumo:
This thesis discusses the design and implementation of a real-time musical pair improvisation scenario for mobile devices. In the scenario transferring musical information over a network connection was required. The suitability of available wireless communication technologies was evaluated and communication was analyzed and designed on multiple layers of TCP/IP protocol stack. Also an application layer protocol was designed and implemented for the scenario. The implementation was integrated into a mobile musical software for children using available software components and libraries although the used platform lead to hardware and software constraints. Software limitations were taken into account in design. The results show that real-time musical improvisation can be implemented with wireless communication and mobile technology. The results also show that link layer had the most significant effect on real-time communication in the scenario.
Resumo:
Along with the increasing in demand of mobile computing, Push Notification (PN) is widely used in mobile phones and other devices. PN allows the developer to send messages to the end users even when the client application is not running at the moment. This solves the problem produced by non-supported multi-tasking feature as well as saving battery life. Microsoft Push Notification Service (MPNS) is one solution to use PNs in Windows Phones. The thesis gives the developers an idea of how to use PNs by introducing MPNS, comparing MPNS with other Push Notification Services, usage of different PN types analysis, and PN simulation system implementation.
Resumo:
In this thesis, the contact resistance of graphene devices was investigated because high contact resistance is detrimental to the performance of graphene field-effect transistors (GFET). Method for increasing so-called edge-contact area was applied in device fabrication process, as few nanometers thick Ni layer was used as a catalytic etchant during the annealing process. Finally, Ni was also used as a metal for contact. GFETs were fabricated using electron beam lithography using graphene fabricated by chemical vapor deposition (CVD). Critical part of the fabrication process was to preserve the high quality of the graphene channel while etching the graphene at contact areas with Ni during the annealing. This was achieved by optimizing the combination of temperature and gas flows. The structural properties of graphene were studied using scanning electron microscopy, scanning confocal μ-Raman spectroscopy and optical microscopy. Evaluation of electric transport properties including contact resistance was carried out by transmission line method and four-probe method. The lowest contact resistance found was about at 350 Ωμm. In addition, different methods to transfer CVD graphene synthesized on copper were studied. Typical method using PMMA as a supporting layer leaves some residues after its removal, thus effecting on the performance of a graphene devices. In a metal assisted transfer method, metal is used as an interfacial layer between PMMA and graphene. This allows more effective removal of PMMA. However, Raman spectra of graphene transferred by metal assisted method showed somewhat lower quality than the PMMA assisted method
Resumo:
The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.