8 resultados para Multi-agent computing
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Fraud is an increasing phenomenon as shown in many surveys carried out by leading international consulting companies in the last years. Despite the evolution of electronic payments and hacking techniques there is still a strong human component in fraud schemes. Conflict of interest in particular is the main contributing factor to the success of internal fraud. In such cases anomaly detection tools are not always the best instruments, since the fraud schemes are based on faking documents in a context dominated by lack of controls, and the perpetrators are those ones who should control possible irregularities. In the banking sector audit team experts can count only on their experience, whistle blowing and the reports sent by their inspectors. The Fraud Interactive Decision Expert System (FIDES), which is the core of this research, is a multi-agent system built to support auditors in evaluating suspicious behaviours and to speed up the evaluation process in order to detect or prevent fraud schemes. The system combines Think-map, Delphi method and Attack trees and it has been built around audit team experts and their needs. The output of FIDES is an attack tree, a tree-based diagram to ”systematically categorize the different ways in which a system can be attacked”. Once the attack tree is built, auditors can choose the path they perceive as more suitable and decide whether or not to start the investigation. The system is meant for use in the future to retrieve old cases in order to match them with new ones and find similarities. The retrieving features of the system will be useful to simplify the risk management phase, since similar countermeasures adopted for past cases might be useful for present ones. Even though FIDES has been built with the banking sector in mind, it can be applied in all those organisations, like insurance companies or public organizations, where anti-fraud activity is based on a central anti-fraud unit and a reporting system.
Resumo:
In this thesis a control system for an intelligent low voltage energy grid is presented, focusing on the control system created by using a multi-agent approach which makes it versatile and easy to expand according to the future needs. The control system is capable of forecasting the future energy consumption and decisions making on its own without human interaction when countering problems. The control system is a part of the St. Petersburg State Polytechnic University’s smart grid project that aims to create a smart grid for the university’s own use. The concept of the smart grid is interesting also for the consumers as it brings new possibilities to control own energy consumption and to save money. Smart grids makes it possible to monitor the energy consumption in real-time and to change own habits to save money. The intelligent grid also brings possibilities to integrate the renewable energy sources to the global or the local energy production much better than the current systems. Consumers can also sell their extra power to the global grid if they want.
Resumo:
The majority of research work carried out in the field of Operations-Research uses methods and algorithms to optimize the pick-up and delivery problem. Most studies aim to solve the vehicle routing problem, to accommodate optimum delivery orders, vehicles etc. This paper focuses on green logistics approach, where existing Public Transport infrastructure capability of a city is used for the delivery of small and medium sized packaged goods thus, helping improve the situation of urban congestion and greenhouse gas emissions reduction. It carried out a study to investigate the feasibility of the proposed multi-agent based simulation model, for efficiency of cost, time and energy consumption. Multimodal Dijkstra Shortest Path algorithm and Nested Monte Carlo Search have been employed for a two-phase algorithmic approach used for generation of time based cost matrix. The quality of the tour is dependent on the efficiency of the search algorithm implemented for plan generation and route planning. The results reveal a definite advantage of using Public Transportation over existing delivery approaches in terms of energy efficiency.
Resumo:
In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.
Resumo:
Due to various advantages such as flexibility, scalability and updatability, software intensive systems are increasingly embedded in everyday life. The constantly growing number of functions executed by these systems requires a high level of performance from the underlying platform. The main approach to incrementing performance has been the increase of operating frequency of a chip. However, this has led to the problem of power dissipation, which has shifted the focus of research to parallel and distributed computing. Parallel many-core platforms can provide the required level of computational power along with low power consumption. On the one hand, this enables parallel execution of highly intensive applications. With their computational power, these platforms are likely to be used in various application domains: from home use electronics (e.g., video processing) to complex critical control systems. On the other hand, the utilization of the resources has to be efficient in terms of performance and power consumption. However, the high level of on-chip integration results in the increase of the probability of various faults and creation of hotspots leading to thermal problems. Additionally, radiation, which is frequent in space but becomes an issue also at the ground level, can cause transient faults. This can eventually induce a faulty execution of applications. Therefore, it is crucial to develop methods that enable efficient as well as resilient execution of applications. The main objective of the thesis is to propose an approach to design agentbased systems for many-core platforms in a rigorous manner. When designing such a system, we explore and integrate various dynamic reconfiguration mechanisms into agents functionality. The use of these mechanisms enhances resilience of the underlying platform whilst maintaining performance at an acceptable level. The design of the system proceeds according to a formal refinement approach which allows us to ensure correct behaviour of the system with respect to postulated properties. To enable analysis of the proposed system in terms of area overhead as well as performance, we explore an approach, where the developed rigorous models are transformed into a high-level implementation language. Specifically, we investigate methods for deriving fault-free implementations from these models into, e.g., a hardware description language, namely VHDL.
Resumo:
In this work an agent based model (ABM) was proposed using the main idea from the Jabłonska-Capasso-Morale (JCM) model and maximized greediness concept. Using a multi-agents simulator, the power of the ABM was assessed by using the historical prices of silver metal dating from the 01.03.2000 to 01.03.2013. The model results, analysed in two different situations, with and without maximized greediness, have proven that the ABM is capable of explaining the silver price dynamics even in utmost events. The ABM without maximal greediness explained the prices with more irrationalities whereas the ABM with maximal greediness tracked the price movements with more rational decisions. In the comparison test, the model without maximal greediness stood as the best to capture the silver market dynamics. Therefore, the proposed ABM confirms the suggested reasons for financial crises or markets failure. It reveals that an economic or financial collapse may be stimulated by irrational and rational decisions, yet irrationalities may dominate the market.