40 resultados para Movable bed models (Hydraulic engineering)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
Soodakattilan sulakeon epästationaarinen käyttäytyminen sekä keon pitkä jäähtymisaika alasajon jälkeen ovat aiheuttaneet ongelmia kattilan taloudellisessa käytettävyydessä. Keon käyttäytymisestä on luotu CFD-malleja, joiden tavoitteena on havainnollistaa keon lämpötilajakaumaa ja rakennetta. Mallien ongelmana on se, että niissä huomioidaan vain keon aktiivinen pintakerros. Keon sisäosan rakennetta ja siinä tapahtuvia prosesseja ei toistaiseksi tunneta kunnolla luotettavan, koko keon kattavan mallin luomiseen. Tässä työssä tutkittiin sulakeon käytön aikana havaittuja muutosilmiöitä, jotka vaikuttavat keon rakenteeseen ja ominaisuuksiin sekä tutkittiin ilmiöiden taustalla olevia tekijöitä. Näitä tekijöitä ovat keon sisässä tapahtuvat kemialliset ja fyysiset prosessit, jotka aiheuttavat muutoksia niin lämpöteknisesti kuin fyysisesti sekä ulkoapäin tulevat tekijät, jotka aiheutuvat ajotilanteiden seurauksena tapahtuvista muutoksista. Työn kokeellisena osana luotiin sulakeon jäähtymismalli käyttäen 1-dimensionaalista ADL-mallia. Mallin pohjana käytettiin StoraEnso Oy:ltä Oulun soodakattilan sulakeosta saatua mittausraporttia. ADL-mallin avulla luotiin keon jäähtymiskäyrät lämpötilan ja syvyyden funktiona. Saadut käyrät täsmäsivät hyvin mittausraportin tuloksiin. Mallin avulla keolle saatiin muodostettua energiatase, jonka tuloksena keosta 12 tunnin aikana poistuva lämpövirta pinnalla oli noin 9.8kW/m2 ja pinnan lämmönsiirtokerroin 58.3W/m²°C. Pohjan poistuvaksi lämpövirraksi saatiin 14.1kW/m2 ja lämmönsiirtokertoimeksi 75.4W/m²°C. Termiseksi diffuusiokertoimeksi saatiin 3.9•10-7m²/s.
Resumo:
Diplomityön tarkoituksena oli luoda ja kehittää kaksi asiakastyytyväisyysmallia asiakastyytyväisyyden mittaamisen aloittamiseksi ja toteuttamiseksi kohdeyrityksessä. Työ pohjautuu nykyisten tyytyväisyysprosessien analysointiin sekä työn teoriaosaan, joka käsittelee yksityiskohtaisesti niitä asioita, joita asiakastyytyväisyyden mittaamisessa ja prosessissa tulisi huomioida. Työssä tehdyn mallien tarkoituksen on auttaa kohdeyritystä hyödyntämään asiakastyytyväisyysmittauksen tuloksia paremmin liiketoiminnassa, sekä asiakkaiden keskuudessa. Työn yhtenä tavoitteena oli myös sopivan mittaustyökalun löytäminen ja suositteleminen kohdeyritykselle.Teorian ja analysoinnin pohjalta luotiin molemmat asiakastyytyväisyysmallit vastamaan kohdeyksiköiden tarpeita. Kun ulkoiset seikat, kuten mittaustavat, mittausinstrumentit, kyselylomakkeet ja vastaajaryhmät oli määritelty, keskityttiin tulosten analysointiin ja hyödyntämiseen, mikä korostui asiakassuuntautuneessa organisaatiossa. Työssä pohdittiin myös yhtenäisen asiakastyytyväisyysprosessin merkitystä ja etuja kohdeyrityksessä.
Resumo:
This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.
Resumo:
The safe use of nuclear power plants (NPPs) requires a deep understanding of the functioning of physical processes and systems involved. Studies on thermal hydraulics have been carried out in various separate effects and integral test facilities at Lappeenranta University of Technology (LUT) either to ensure the functioning of safety systems of light water reactors (LWR) or to produce validation data for the computer codes used in safety analyses of NPPs. Several examples of safety studies on thermal hydraulics of the nuclear power plants are discussed. Studies are related to the physical phenomena existing in different processes in NPPs, such as rewetting of the fuel rods, emergency core cooling (ECC), natural circulation, small break loss-of-coolant accidents (SBLOCA), non-condensable gas release and transport, and passive safety systems. Studies on both VVER and advanced light water reactor (ALWR) systems are included. The set of cases include separate effects tests for understanding and modeling a single physical phenomenon, separate effects tests to study the behavior of a NPP component or a single system, and integral tests to study the behavior of the whole system. In the studies following steps can be found, not necessarily in the same study. Experimental studies as such have provided solutions to existing design problems. Experimental data have been created to validate a single model in a computer code. Validated models are used in various transient analyses of scaled facilities or NPPs. Integral test data are used to validate the computer codes as whole, to see how the implemented models work together in a code. In the final stage test results from the facilities are transferred to the NPP scale using computer codes. Some of the experiments have confirmed the expected behavior of the system or procedure to be studied; in some experiments there have been certain unexpected phenomena that have caused changes to the original design to avoid the recognized problems. This is the main motivation for experimental studies on thermal hydraulics of the NPP safety systems. Naturally the behavior of the new system designs have to be checked with experiments, but also the existing designs, if they are applied in the conditions that differ from what they were originally designed for. New procedures for existing reactors and new safety related systems have been developed for new nuclear power plant concepts. New experiments have been continuously needed.
Resumo:
Nowadays the used fuel variety in power boilers is widening and new boiler constructions and running models have to be developed. This research and development is done in small pilot plants where more faster analyse about the boiler mass and heat balance is needed to be able to find and do the right decisions already during the test run. The barrier on determining boiler balance during test runs is the long process of chemical analyses of collected input and outputmatter samples. The present work is concentrating on finding a way to determinethe boiler balance without chemical analyses and optimise the test rig to get the best possible accuracy for heat and mass balance of the boiler. The purpose of this work was to create an automatic boiler balance calculation method for 4 MW CFB/BFB pilot boiler of Kvaerner Pulping Oy located in Messukylä in Tampere. The calculation was created in the data management computer of pilot plants automation system. The calculation is made in Microsoft Excel environment, which gives a good base and functions for handling large databases and calculations without any delicate programming. The automation system in pilot plant was reconstructed und updated by Metso Automation Oy during year 2001 and the new system MetsoDNA has good data management properties, which is necessary for big calculations as boiler balance calculation. Two possible methods for calculating boiler balance during test run were found. Either the fuel flow is determined, which is usedto calculate the boiler's mass balance, or the unburned carbon loss is estimated and the mass balance of the boiler is calculated on the basis of boiler's heat balance. Both of the methods have their own weaknesses, so they were constructed parallel in the calculation and the decision of the used method was left to user. User also needs to define the used fuels and some solid mass flowsthat aren't measured automatically by the automation system. With sensitivity analysis was found that the most essential values for accurate boiler balance determination are flue gas oxygen content, the boiler's measured heat output and lower heating value of the fuel. The theoretical part of this work concentrates in the error management of these measurements and analyses and on measurement accuracy and boiler balance calculation in theory. The empirical part of this work concentrates on the creation of the balance calculation for the boiler in issue and on describing the work environment.
Resumo:
Diplomityön tavoitteena on paineistimen yksityiskohtainen mallintaminen APROS- ja TRACE- termohydrauliikkaohjelmistoja käyttäen. Rakennetut paineistinmallit testattiin vertaamalla laskentatuloksia paineistimen täyttymistä, tyhjentymistä ja ruiskutusta käsittelevistä erilliskokeista saatuun mittausdataan. Tutkimuksen päätavoitteena on APROSin paineistinmallin validoiminen käyttäen vertailuaineistona PACTEL ATWS-koesarjan sopivia paineistinkokeita sekä MIT Pressurizer- ja Neptunus- erilliskokeita. Lisäksi rakennettiin malli Loviisan ydinvoimalaitoksen paineistimesta, jota käytettiin turbiinitrippitransientin simulointiin tarkoituksena selvittää mahdolliset voimalaitoksen ja koelaitteistojen mittakaavaerosta johtuvat vaikutukset APROSin paineistinlaskentaan. Kokeiden simuloinnissa testattiin erilaisia noodituksia ja mallinnusvaihtoehtoja, kuten entalpian ensimmäisen ja toisen kertaluvun diskretisointia, ja APROSin sekä TRACEn antamia tuloksia vertailtiin kattavasti toisiinsa. APROSin paineistinmallin lämmönsiirtokorrelaatioissa havaittiin merkittävä puute ja laskentatuloksiin saatiin huomattava parannus ottamalla käyttöön uusi seinämälauhtumismalli. Työssä tehdyt TRACE-simulaatiot ovat osa United States Nuclear Regulatory Commissionin kansainvälistä CAMP-koodinkehitys-ja validointiohjelmaa.
Resumo:
This paper analyzes the possibilities of integrating cost information and engineering design. Special emphasis is put on finding the potential of using the activity-based costing (ABC) method. Today, the problem of cost estimation in engineering design is that there are two separate extremes of knowledge. On the one extreme, the engineers model the technical parametres behindcosts in great detail but do not get appropriate cost information to their elegant models. On the other extreme, the accounting professionals are stuck with traditional cost accounting methods driven by the procedures and cycles of financial accounting. Therefore, in many cases, the cost information needs of various decision making groups, for example design engineers, are not served satisfactorily. This paper studies if the activity-based costing (ABC) method could offer a compromise between the two extremes. Recognizing activities and activity chains as well as activity and cost drivers could be specially beneficial for design engineers. Also, recognizing the accurate and reliable product costs of existing products helps when doing variant design. However, ABC is not at its best if the cost system becomes too complicated. This is why a comprehensive ABC-cost information system with detailed cost information for the use of design engineers should be examined critically. ABC is at its best when considering such issues as which activities drive costs, the cost of product complexity, allocating indirect costs on the products, the relationships between processes and costs, and the cost of excess capacity.
Resumo:
Process development will be largely driven by the main equipment suppliers. The reason for this development is their ambition to supply complete plants or process systems instead of single pieces of equipment. The pulp and paper companies' interest lies in product development, as their main goal is to create winning brands and effective brand management. Design engineering companies will find their niche in detail engineering based on approved process solutions. Their development work will focus on increasing the efficiency of engineering work. Process design is a content-producing profession, which requires certain special characteristics: creativity, carefulness, the ability to work as a member of a design team according to time schedules and fluency in oral as well as written presentation. In the future, process engineers will increasingly need knowledge of chemistry as well as information and automation technology. Process engineering tools are developing rapidly. At the moment, these tools are good enough for static sizing and balancing, but dynamic simulation tools are not yet good enough for the complicated chemical reactions of pulp and paper chemistry. Dynamic simulation and virtual mill models are used as tools for training the operators. Computational fluid dynamics will certainlygain ground in process design.
Resumo:
This thesis gives an overview of the validation process for thermal hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. The cases presented are not exhaustive, but they give a good overview of the work performed by the personnel of Lappeenranta University of Technology (LUT). Large part of the work has been performed in co-operation with the CATHARE-team in Grenoble, France. The design of a Russian type pressurized water reactor, VVER, differs from that of a Western-type PWR. Most of thermal-hydraulic system codes are validated only for the Western-type PWRs. Thus, the codes should be assessed and validated also for VVER design in order to establish any weaknesses in the models. This information is needed before codes can be used for the safety analysis. Theresults of the assessment and validation calculations presented here show that the CATHARE code can be used also for the thermal-hydraulic safety studies for VVER type plants. However, some areas have been indicated which need to be reassessed after further experimental data become available. These areas are mostly connected to the horizontal stem generators, like condensation and phase separation in primary side tubes. The work presented in this thesis covers a large numberof the phenomena included in the CSNI code validation matrices for small and intermediate leaks and for transients. Also some of the phenomena included in the matrix for large break LOCAs are covered. The matrices for code validation for VVER applications should be used when future experimental programs are planned for code validation.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Over 70% of the total costs of an end product are consequences of decisions that are made during the design process. A search for optimal cross-sections will often have only a marginal effect on the amount of material used if the geometry of a structure is fixed and if the cross-sectional characteristics of its elements are property designed by conventional methods. In recent years, optimalgeometry has become a central area of research in the automated design of structures. It is generally accepted that no single optimisation algorithm is suitable for all engineering design problems. An appropriate algorithm, therefore, mustbe selected individually for each optimisation situation. Modelling is the mosttime consuming phase in the optimisation of steel and metal structures. In thisresearch, the goal was to develop a method and computer program, which reduces the modelling and optimisation time for structural design. The program needed anoptimisation algorithm that is suitable for various engineering design problems. Because Finite Element modelling is commonly used in the design of steel and metal structures, the interaction between a finite element tool and optimisation tool needed a practical solution. The developed method and computer programs were tested with standard optimisation tests and practical design optimisation cases. Three generations of computer programs are developed. The programs combine anoptimisation problem modelling tool and FE-modelling program using three alternate methdos. The modelling and optimisation was demonstrated in the design of a new boom construction and steel structures of flat and ridge roofs. This thesis demonstrates that the most time consuming modelling time is significantly reduced. Modelling errors are reduced and the results are more reliable. A new selection rule for the evolution algorithm, which eliminates the need for constraint weight factors is tested with optimisation cases of the steel structures that include hundreds of constraints. It is seen that the tested algorithm can be used nearly as a black box without parameter settings and penalty factors of the constraints.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
It is generally accepted that between 70 and 80% of manufacturing costs can be attributed to design. Nevertheless, it is difficult for the designer to estimate manufacturing costs accurately, especially when alternative constructions are compared at the conceptual design phase, because of the lack of cost information and appropriate tools. In general, previous reports concerning optimisation of a welded structure have used the mass of the product as the basis for the cost comparison. However, it can easily be shown using a simple example that the use of product mass as the sole manufacturing cost estimator is unsatisfactory. This study describes a method of formulating welding time models for cost calculation, and presents the results of the models for particular sections, based on typical costs in Finland. This was achieved by collecting information concerning welded products from different companies. The data included 71 different welded assemblies taken from the mechanical engineering and construction industries. The welded assemblies contained in total 1 589 welded parts, 4 257 separate welds, and a total welded length of 3 188 metres. The data were modelled for statistical calculations, and models of welding time were derived by using linear regression analysis. Themodels were tested by using appropriate statistical methods, and were found to be accurate. General welding time models have been developed, valid for welding in Finland, as well as specific, more accurate models for particular companies. The models are presented in such a form that they can be used easily by a designer, enabling the cost calculation to be automated.
Resumo:
Työn tavoitteena oli kasvattaa sahan dimensiolaitoksella käytettävän trimmerin rakenteellista kapasiteettia. Tavoitteeseen pyrittiin modernisoimalla trimmerin teräyksikköä käyttävää toimilaite ja teräyksikön säätö dynamiikan mallinnuksen avulla. Trimmerin teräyksikön dynamiikka mallinnettiin MATLAB-matematiikkaohjelmistolla kaksiulotteisena kinematiikkamallina ja kolmeulotteisena kinetiikkamallina. Dynamiikkamallien tulosten perusteella valittin teräyksikköä käyttävä toimilaite komponentteineen. Kinetiikkamalliin mallinnettiin trimmeriä käyttävä hydraulipiiri valittuine komponentteineen keskittyneiden paineiden ja puoliempiirisen mallinnuksen periaatteita käyttäen. Teräyksikön työkiertoa säätämään mallinnettiin suljettu takaisinkytketty säätöpiiri. Tuloksien perusteella valittiin optimaalinen toimilaitteen asemointigeometria ja todettiin mallinnetun järjestelmän täyttävän asetetut vaatimukset. Järjestelmää testattiin muuttamalla jarjestelman parametreja ja tutkimalla muutosten vaikutuksia jarjestelman toimintaan. Lisaksi tutkittiin lyhyesti terayksikon rakenteen keventamisen vaikutuksia.