3 resultados para Monotone splines
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Convective transport, both pure and combined with diffusion and reaction, can be observed in a wide range of physical and industrial applications, such as heat and mass transfer, crystal growth or biomechanics. The numerical approximation of this class of problemscan present substantial difficulties clue to regions of high gradients (steep fronts) of the solution, where generation of spurious oscillations or smearing should be precluded. This work is devoted to the development of an efficient numerical technique to deal with pure linear convection and convection-dominated problems in the frame-work of convection-diffusion-reaction systems. The particle transport method, developed in this study, is based on using rneshless numerical particles which carry out the solution along the characteristics defining the convective transport. The resolution of steep fronts of the solution is controlled by a special spacial adaptivity procedure. The serni-Lagrangian particle transport method uses an Eulerian fixed grid to represent the solution. In the case of convection-diffusion-reaction problems, the method is combined with diffusion and reaction solvers within an operator splitting approach. To transfer the solution from the particle set onto the grid, a fast monotone projection technique is designed. Our numerical results confirm that the method has a spacial accuracy of the second order and can be faster than typical grid-based methods of the same order; for pure linear convection problems the method demonstrates optimal linear complexity. The method works on structured and unstructured meshes, demonstrating a high-resolution property in the regions of steep fronts of the solution. Moreover, the particle transport method can be successfully used for the numerical simulation of the real-life problems in, for example, chemical engineering.
Resumo:
The goal of this thesis is to implement software for creating 3D models from point clouds. Point clouds are acquired with stereo cameras, monocular systems or laser scanners. The created 3D models are triangular models or NURBS (Non-Uniform Rational B-Splines) models. Triangular models are constructed from selected areas from the point clouds and resulted triangular models are translated into a set of quads. The quads are further translated into an estimated grid structure and used for NURBS surface approximation. Finally, we have a set of NURBS surfaces which represent the whole model. The problem wasn’t so easy to solve. The selected triangular surface reconstruction algorithm did not deal well with noise in point clouds. To handle this problem, a clustering method is introduced for simplificating the model and removing noise. As we had better results with the smaller point clouds produced by clustering, we used points in clusters to better estimate the grids for NURBS models. The overall results were good when the point cloud did not have much noise. The point clouds with small amount of error had good results as the triangular model was solid. NURBS surface reconstruction performed well on solid models.
Resumo:
In 1859, Charles Darwin published his theory of evolution by natural selection, the process occurring based on fitness benefits and fitness costs at the individual level. Traditionally, evolution has been investigated by biologists, but it has induced mathematical approaches, too. For example, adaptive dynamics has proven to be a very applicable framework to the purpose. Its core concept is the invasion fitness, the sign of which tells whether a mutant phenotype can invade the prevalent phenotype. In this thesis, four real-world applications on evolutionary questions are provided. Inspiration for the first two studies arose from a cold-adapted species, American pika. First, it is studied how the global climate change may affect the evolution of dispersal and viability of pika metapopulations. Based on the results gained here, it is shown that the evolution of dispersal can result in extinction and indeed, evolution of dispersalshould be incorporated into the viability analysis of species living in fragmented habitats. The second study is focused on the evolution of densitydependent dispersal in metapopulations with small habitat patches. It resulted a very surprising unintuitive evolutionary phenomenon, how a non-monotone density-dependent dispersal may evolve. Cooperation is surprisingly common in many levels of life, despite of its obvious vulnerability to selfish cheating. This motivated two applications. First, it is shown that density-dependent cooperative investment can evolve to have a qualitatively different, monotone or non-monotone, form depending on modelling details. The last study investigates the evolution of investing into two public-goods resources. The results suggest one general path by which labour division can arise via evolutionary branching. In addition to applications, two novel methodological derivations of fitness measures in structured metapopulations are given.