25 resultados para Models for effects separation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Movie distribution on the Internet has become more common in recent years along with fast broadband internet connections. The problem so far has been that the greatest part of movie distribution on the Internet has been illegal. This is about to change because the major film distributors are finally starting to rent and sell movies more and more on the Internet due to their growing confidence in new copy protection methods. The importance of movie online distribution to the movie industry is still tiny but it is increasing rapidly as is investing in new business models and distribution methods in the USA and Europe. This thesis examines the basic concepts of online movie distribution, such as distribution techniques and copy protection, the main companies that rent and sell movies on the internet and their business models, the effects of movie piracy and non-commercial distribution channels. The intention was to provide the reader with an overview of different aspects of movie distribution on the Internet and its future. The conclusion was that movie distribution on the Internet will play a bigger financial part in the future although it was still too early to say just how significant that will be. We will probably see many corresponding distribution techniques, like peer-to-peer networks and streaming servers distributing and broadcasting movies to different end-user platforms like television, PC and portable media players. Internet distribution of movies will not revolutionize movie distribution in the next couple of years but it will make possible new efficient and inexpensive ways to distribute movies globally which will in turn increase the possibilities for revenue, especially for small independent movie producers and distributors.
Resumo:
The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
Granular flow phenomena are frequently encountered in the design of process and industrial plants in the traditional fields of the chemical, nuclear and oil industries as well as in other activities such as food and materials handling. Multi-phase flow is one important branch of the granular flow. Granular materials have unusual kinds of behavior compared to normal materials, either solids or fluids. Although some of the characteristics are still not well-known yet, one thing is confirmed: the particle-particle interaction plays a key role in the dynamics of granular materials, especially for dense granular materials. At the beginning of this thesis, detailed illustration of developing two models for describing the interaction based on the results of finite-element simulation, dimension analysis and numerical simulation is presented. The first model is used to describing the normal collision of viscoelastic particles. Based on some existent models, more parameters are added to this model, which make the model predict the experimental results more accurately. The second model is used for oblique collision, which include the effects from tangential velocity, angular velocity and surface friction based on Coulomb's law. The theoretical predictions of this model are in agreement with those by finite-element simulation. I n the latter chapters of this thesis, the models are used to predict industrial granular flow and the agreement between the simulations and experiments also shows the validation of the new model. The first case presents the simulation of granular flow passing over a circular obstacle. The simulations successfully predict the existence of a parabolic steady layer and show how the characteristics of the particles, such as coefficients of restitution and surface friction affect the separation results. The second case is a spinning container filled with granular material. Employing the previous models, the simulation could also reproduce experimentally observed phenomena, such as a depression in the center of a high frequency rotation. The third application is about gas-solid mixed flow in a vertically vibrated device. Gas phase motion is added to coherence with the particle motion. The governing equations of the gas phase are solved by using the Large eddy simulation (LES) and particle motion is predicted by using the Lagrangian method. The simulation predicted some pattern formation reported by experiment.
Resumo:
In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.
Resumo:
Orgaanisten yhdisteiden negatiivinen retentio nanosuodatuksessa on ilmiö, jota eiole kovin paljon tutkittu. Negatiivisen retentioon vaikuttavat syyt tai tekijäteivät ole kovin hyvin tiedossa. Erotusmenetelmänä negatiivinen retentio voi olla käyttökelpoinen tietyissä sovelluksissa. Työn kirjallisuusosa käsittelee nanosuodatuksen erotusmekanismeja ja retentioon vaikuttavia tekijöitä. Myös joitakin malleja on esitetty. Nanosuodatus on monimutkainen prosessi, josta ei voida löytää vain yhtä erotusmekanismia tai retentioon vaikuttavaa tekijää. Prosessit ovat kokonaisuuksia, joissa erottumiseen vaikuttavat syöttöliuoksen, erotettavan komponentin ja kalvon ominaisuudet, ja niiden väliset vuorovaikutukset. Työn kokeellisessa osassa koottiin mahdollisimman paljon esimerkkejä, joissa monosakkaridien negatiivinen retentio ilmenee. Muita orgaanisia ja epäorgaanisia yhdisteitä käytettiin 'häiriöyhdisteinä' syöttöliuoksessa monosakkaridien kanssa. Kokeet suoritettiin kahdella laboratoriomittakaavan suodatuslaitteella käyttäen kahta kaupallista nanosuodatuskalvoa. Negatiivinen retentio ilmeni useissa tapauksissa. Permeaattivuon ja 'häiriöyhdisteiden' pitoisuuksien havaittiin vaikuttavan voimakkaasti negatiivisen retention ilmenemiseen.
Resumo:
In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.
Resumo:
This study examines how firms interpret new, potentially disruptive technologies in their own strategic context. The work presents a cross-case analysis of four potentially disruptive technologies or technical operating models: Bluetooth, WLAN, Grid computing and Mobile Peer-to-peer paradigm. The technologies were investigated from the perspective of three mobile operators, a device manufacturer and a software company in the ICT industry. The theoretical background for the study consists of the resource-based view of the firm with dynamic perspective, the theories on the nature of technology and innovations, and the concept of business model. The literature review builds up a propositional framework for estimating the amount of radical change in the companies' business model with two middle variables, the disruptiveness potential of a new technology, and the strategic importance of a new technology to a firm. The data was gathered in group discussion sessions in each company. The results of each case analysis were brought together to evaluate, how firms interpret the potential disruptiveness in terms of changes in product characteristics and added value, technology and market uncertainty, changes in product-market positions, possible competence disruption and changes in value network positions. The results indicate that the perceived disruptiveness in terms ofproduct characteristics does not necessarily translate into strategic importance. In addition, firms did not see the new technologies as a threat in terms of potential competence disruption.
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
The CO2-laser-MAG hybrid welding process has been shown to be a productive choice for the welding industry, being used in e.g. the shipbuilding, pipe and beam manufacturing, and automotive industries. It provides an opportunity to increase the productivity of welding of joints containing air gaps compared with autogenous laser beam welding, with associated reductions in distortion and marked increases in welding speeds and penetration in comparison with both arc and autogenous laser welding. The literature study indicated that the phenomena of laser hybrid welding are mostly being studied using bead-on-plate welding or zero air gap configurations. This study shows it very clearly that the CO2 laser-MAG hybrid welding process is completely different, when there is a groove with an air gap. As in case of industrial use it is excepted that welding is performed for non-zero grooves, this study is of great importance for industrial applications. The results of this study indicate that by using a 6 kW CO2 laser-MAG hybrid welding process, the welding speed may also be increased if an air gap is present in the joint. Experimental trials indicated that the welding speed may be increased by 30-82% when compared with bead-on-plate welding, or welding of a joint with no air gap i.e. a joint prepared as optimum for autogenous laser welding. This study demonstrates very clearly, that the separation of the different processes, as well as the relative configurations of the processes (arc leading or trailing) affect welding performance significantly. These matters influence the droplet size and therefore the metal transfer mode, which in turn determined the resulting weld quality and the ability to bridge air gaps. Welding in bead-onplate mode, or of an I butt joint containing no air gap joint is facilitated by using a leading torch. This is due to the preheating effect of the arc, which increases the absorptivity of the work piece to the laser beam, enabling greater penetration and the use of higher welding speeds. With an air gap present, air gap bridging is more effectively achieved by using a trailing torch because of the lower arc power needed, the wider arc, and the movement of droplets predominantly towards the joint edges. The experiments showed, that the mode of metal transfer has a marked effect on gap bridgeability. Transfer of a single droplet per arc pulse may not be desirable if an air gap is present, because most of the droplets are directed towards the middle of the joint where no base material is present. In such cases, undercut is observed. Pulsed globular and rotational metal transfer modes enable molten metal to also be transferred to the joint edges, and are therefore superior metal transfer modes when bridging air gaps. It was also found very obvious, that process separation is an important factor in gap bridgeability. If process separation is too large, the resulting weld often exhibits sagging, or no weld may be formed at all as a result of the reduced interaction between the component processes. In contrast, if the processes are too close to one another, the processing region contains excess molten metal that may create difficulties for the keyhole to remain open. When the distance is optimised - i.e. a separation of 0-4 mm in this study, depending on the welding speed and beam-arc configuration - the processes act together, creating beneficial synergistic effects. The optimum process separation when using a trailing torch was found to be shorter (0-2 mm) than when a leading torch is used (2-4 mm); a result of the facilitation of weld pool motion when the latter configuration is adopted. This study demonstrates, that the MAG process used has a strong effect on the CO2-laser-MAG hybrid welding process. The laser beam welding component is relatively stable and easy to manage, with only two principal processing parameters (power and welding speed) needing to be adjusted. In contrast, the MAG process has a large number of processing parameters to optimise, all of which play an important role in the interaction between the laser beam and the arc. The parameters used for traditional MAG welding are often not optimal in achieving the most appropriate mode of metal transfer, and weld quality in laser hybrid welding, and must be optimised if the full range of benefits provided by hybrid welding are to be realised.
Resumo:
The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
Sea buckthorn (Hippophaë) berries are ingredients of the Chinese traditional medicine. In addition to China, they are nowadays cultivated for food in several European countries, Russia, Canada, the USA, and Japan. Sea buckthorn berries are a rich source of flavonoids, mainly flavonol glycosides and proanthocyanidins. Depending on the genetic background, growth conditions, and ripeness of the berries, vitamin C concentrations up to over 1 g/100 ml juice, have been reported. Sea buckthorn berries contain inositols and methyl inositols, components of messenger molecules in humans. Sea buckthorn seed oil is rich in essential aplha-linolenic and linoleic acids, whereas the most abundant fatty acids in the berry oil are palmitoleic, palmitic and oleic acids. Other potentially beneficial lipophilic compounds of sea buckthorn seeds and berries include carotenoids, phytosterols, tocopherols and tocotrienols. The effects of sea buckthorn fractions on inflammation, platelet aggregation, oxidation injuries, the liver, skin and mucosa, among others, have been reported. The aim of the thesis work was to investigate the health effects of sea buckthorn berries and oil in humans. The physiological effects of sea buckthorn berries, berry components, and oil have mostly been studied in vitro and in animal models, leaving a demand for more clinical trials. In the first randomized, placebo-controlled trial of this thesis healthy adults consumed 28 g/day of sea buckthorn berries for three months. The main objective was to investigate the effects on the common cold. In addition, effects on other infections, inflammation and circulating lipid markers associated with cardiovascular disease risk were studied. In the second randomized, placebocontrolled trial participants reporting dry eye symptoms consumed 2 g/day of sea buckthorn oil from the seeds and berries for three months. The effects on symptoms and clinical signs of dry eye were monitored. In addition, the effects on circulating markers of inflammation and liver functions were analyzed. Sea buckthorn berries did not affect the common cold or other infections in healthy adults. However, a decrease in serum C-reactive protein was detected, indicating effects on inflammation. Fasting concentrations of serum flavonols, typical to sea buckthorn berry, increased without affecting the circulating total, HDL, LDL cholesterol, or triacylglycerol concentrations. Tear film hyperosmolarity and activation of inflammation at the ocular surface are among the core mechanisms of dry eye. Combined sea buckthorn berry and seed oil attenuated the rise in tear film osmolarity taking place during the cold season. It also positively affected some of the dry eye symptoms. Based on the tear film fatty acid analysis, the effects were not mediated through direct incorporation of sea buckthorn oil fatty acids to tear film lipids. It is likely that the fatty acids, carotenoids, tocopherols and tocotrienols of sea buckthorn oil affected the inflammation of the ocular surface, lacrimal and/or meibomian glands. The effects on the differentiation of meibomian gland cells are also possible. Sea buckthorn oil did not affect the serum concentrations of inflammation markers or liver enzymes investigated. In conclusion, this thesis work suggests positive effects of sea buckthorn berries and oil on inflammation and dry eye, respectively, in humans.