2 resultados para Model Identification
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.
Resumo:
Crystallization is employed in different industrial processes. The method and operation can differ depending on the nature of the substances involved. The aim of this study is to examine the effect of various operating conditions on the crystal properties in a chemical engineering design window with a focus on ultrasound assisted cooling crystallization. Batch to batch variations, minimal manufacturing steps and faster production times are factors which continuous crystallization seeks to resolve. Continuous processes scale-up is considered straightforward compared to batch processes owing to increase of processing time in the specific reactor. In cooling crystallization process, ultrasound can be used to control the crystal properties. Different model compounds were used to define the suitable process parameters for the modular crystallizer using equal operating conditions in each module. A final temperature of 20oC was employed in all experiments while the operating conditions differed. The studied process parameters and configuration of the crystallizer were manipulated to achieve a continuous operation without crystal clogging along the crystallization path. The results from the continuous experiment were compared with the batch crystallization results and analysed using the Malvern Morphologi G3 instrument to determine the crystal morphology and CSD. The modular crystallizer was operated successfully with three different residence times. At optimal process conditions, a longer residence time gives smaller crystals and narrower CSD. Based on the findings, at a constant initial solution concentration, the residence time had clear influence on crystal properties. The equal supersaturation criterion in each module offered better results compared to other cooling profiles. The combination of continuous crystallization and ultrasound has large potential to overcome clogging, obtain reproducible and narrow CSD, specific crystal morphologies and uniform particle sizes, and exclusion of milling stages in comparison to batch processes.