29 resultados para Mn(II) complexes
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Mangaanilla on havaittu olevan haitallisia vaikutuksia mekaanisen massan peroksidivalkaisussa. Suurin ongelma on mangaanin katalyyttisen aktiivisuuden aiheuttama peroksidin hajoaminen. On havaittu, että mangaanin hapetusasteella voisi olla merkittävä vaikutus mangaanin kelatoitumiseen sekä sen katalysoimaan peroksidin hajoamiseen valkaisun aikana. Työssä selvitettiin, miten massan mangaanipitoisuus ja mangaanin hapetusasteen muutos vaikuttavat valkaisuun ja mangaanin kelatoitumiseen. Laboratoriokokeiden tulokset osoittavat, että mangaani kelatoituu hapetusasteilla +II ja +III happamissa oloissa yhtä hyvin. pH:n nousu heikentää enemmän hapetusasteella +III olevan mangaanin kelatoitumista. Mangaani ei kelatoidu hapetusasteella +IV lainkaan. Valkaisukokeiden perusteella mangaani katalysoi peroksidin hajoamista hapetusasteilla +II ja +III yhtä voimakkaasti, mikä näkyy samalla vaaleuden nousun heikkenemisenä peroksidin määrän vähetessä. Mn(IV) ei katalysoi peroksidin hajoamista ollenkaan ja sen vaikutus vaaleuteen on selvästi pienempi kuin hapetusasteilla +II ja +III. Laboratoriokokeiden tulokset osoittavat myös, että kompleksinmuodostajalla on valkaisussa selvä positiivinen vaikutus. DTPA estää hapetusasteen +II katalyyttistä aktiivisuutta voimakkaammin kuin hapetusasteen +III. Valkaisusakeuden nosto pienensi mangaanin katalyyttistä aktiivisuutta, minkä oletettiin johtuvan stabilointikemikaalien konsentraation noususta.
Resumo:
This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Soitinnus: orkesteri.
Resumo:
Digitoitu 15. 8. 2008.
Resumo:
Soitinnus: Jousiork.
Resumo:
Soitinnus: piano, orkesteri.
Resumo:
Digitoitu 13. 8. 2008.
Resumo:
Digitoitu 28. 5. 2008.
Resumo:
Digitoitu 11. 8. 2008.
Resumo:
Digitoitu 18. 9. 2008.
Resumo:
Soitinnus: orkesteri.
Resumo:
Soitinnus: viulu, piano.
Resumo:
Digitoitu 9. 5. 2008.
Resumo:
Soitinnus: lauluäänet (sopraano, altto), sekakuoro, orkesteri.