9 resultados para Mixed-mode end load split
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.
Resumo:
Työssä tutkittiin hitsattujen levyliitosten väsymiskestävyyden mitoitusarvoja. Hitsien väsymiskestävyyden mitoitusarvot määritettiin lineaarista murtumismekaniikkaa soveltavalla 2D FEM-laskentaohjelmalla. Murtumismekaanisen laskennan tuloksista määriteltiin, eri liitosgeometrioiden ja kuormitustyyppien mukaisia, nimellisen jännityksen väsymismitoitusmenetelmää vastaavia FAT-luokkia, joissa on huomioitu rakenteellinen jännitys hitsiä vastaan kohtisuorassa suunnassa. Tutkittujen liitosten geometriat olivat pääsääntöisesti poikkeavia mitoitusstandardien ja ohjeiden sisältämistä taulukkotapauksista. Laskennassa otettiin huomioon hitsien liittymiskulma perusaineeseen, rajaviivan pyöristykset ja vajaa hitsautumissyvyys. Kuormitustyyppien vaihtelua tutkittiin rakenteellisen jännityksen taivutusosuuden muutoksilla ja kuormaa kantavien X-liitosten risteävien kuormituksien suhteellisilla suuruuksilla. Väsymiskestävyydet määritettiin kuormituskohtaisille kalvo- ja taivutusjännityksille sekä näiden jännitysjakaumien keskiarvoille. Työssä saatuja FAT-luokkia voidaan hyödyntää vastaavien geometrioiden ja kuormitusten yhteydessä, sekä interpoloimalla myös tuloksien väliarvoissa. Työssä käytetyillä menetelmillä voidaan parantaa nimellisen jännityksen mitoitusmenetelmän tarkkuutta ja laajentaa sitä koskemaan myös taulukkotapausten ulkopuolisia liitoksia. Työn tuloksissa on esitetty FAT-luokkia T-, X- ja päittäisliitoksille ja näiden eri kuormitusyhdistelmille.
Resumo:
The aim of the study is to developa novel robust controller based on sliding mode control technique for the hydraulic servo system with flexible load and for a flexible manipulator with the lift and jib hydraulic actuators. For the purpose of general control design, a dynamic model is derived describing the principle physical behavior for both the hydraulic servo system and the flexible hydraulic manipulator. The mechanism of hydraulic servo systems is described by basic mathematical equations of fluid powersystems and the dynamics of flexible manipulator is modeled by the assumed modemethod. The controller is constructed so as to track desired trajectories in the presence of model imprecision. Experimental and simulation results demonstratethat sliding mode control has benefits which can be used to guarantee stabilityin uncertain systems and improve the system performance and load tolerance.
Resumo:
Control applications of switched mode power supplies have been widely investigated. The main objective ofresearch and development (R&D) in this field is always to find the most suitable control method to be implemented in various DC/DC converter topologies. Inother words, the goal is to select a control method capable of improving the efficiency of the converter, reducing the effect of disturbances (line and load variation), lessening the effect of EMI (electro magnetic interference), and beingless effected by component variation. The main objective of this research work is to study different control methods implemented in switched mode power supplies namely (PID control, hysteresis control, adaptive control, current programmed control, variable structure control (VSC), and sliding mode control (SMC). The advantages and drawbacks of each control method are given. Two control methods, the PID and the SMC are selected and their effects on DC/DC (Buck, Boost, and Buck-Boost) converters are examined. Matlab/SimulinkTM is used to implement PID control method in DC/DC Buck converter and SMC in DC/DC (Buck, and Buck Boost) converters. For the prototype, operational amplifiers (op-amps) are used to implement PID control in DC/DC Buck converter. For SMC op-amps are implemented in DC/DC Buck converter and dSPACETM is used to control the DC/DC Buck-Boost converter. The SMC can be applied to the DC/DC (Buck, Boost, and Buck-Boost) converters. A comparison of the effects of the PID control and the SMC on the DC/DC Buck converter response in steady state, under line variations, load variations, and different component variations is performed. Also the Conducted RF-Emissions between the PID and SMC DC/DC Buck Converter are compared. The thesis shows that, in comparison with the PID control, the SMC provides better steady-state response, better dynamic response, less EMI, inherent order reduction, robustness against system uncertainty disturbances, and an implicit stability proof. Giving a better steady-state and dynamic response, the SMC is implemented in a DC/DC resonant converter. The half-wave zero current switching (HWZCS) DC/DC Buck converter is selected as a converter topology. A general guideline to select the tank component values, needed for the designing of a HWZCS DC/DC Buck, is obtained. The implementation of the SMC to a HWZCS DC/DC Buck converter is analysed. The converter response is investigated in the steady-state region and in the dynamic region.
Resumo:
A variable temperature field sets exacting demands to the structure under mechanical load. Most of all the lifetime of the rotating drum structure depends on temperature differences between parts inside the drum. The temperature difference was known because of the measurements made before. The list of demands was created based on customers’ needs. The limits of this paper were set to the inner structure of the drum. Creation of ideas for the inner structure was started open minded. The main principle in the creation process was to create new ideas for the function of the product with the help of sub-functions. The sub-functions were created as independent as possible. The best sub-functions were combined together and the new working principles were created based on them. Every working principle was calculated separately and criticized at the end of the calculation process. The main objective was to create the new kind of structure, which is not based too much to the old, inoperative structure. The affect of own weight of the inner structure to the stress values was quite small but it was also taken into consideration when calculating the maximum stress value of the structure. Because of very complex structures all of the calculations were made with the help of the ProE – Mechanica software. The fatigue analyze was made also for the best structure solution.
Resumo:
The aim of this work is to study the effect of different fuel mixtures on the operation of circulating fluidized bed (CFB) boiler. The applicability of heat balance modeling software IPSEpro to simulate CFB boiler operation is also investigated. The work discusses various types of boilers and methods of boiler operation. The fuel properties and the possible fuel influence on the boiler efficiency are described. Various biofuel types that are possible to use in combination with other fuels are presented. Some examples of the fuel mixtures use are given. A CFB boiler model has been constructed using IPSEpro and applied to analyze boiler operation outside design conditions. In the simulations, the effect of different load levels and moisture contents for the fuel mixture has been studied.
Resumo:
Pulssinleveysmoduloidun vaihtosuuntaajan hyötysuhteen parantaminen ja kytkentätaajuuden suurentaminen ovat johtaneet lähtöjännitteen suuritaajuiseen taajuussisältöön kaksitasoisessa, jännitevälipiirillisessä taajuusmuuttajatopologiassa. Kasvava tarve siirtää tehoa myös verkkoon päin on lisännyt aktiivisen verkkosillan käyttöä. Kaksitasoisen aktiivisen verkkosillan vaikutuksesta DC-välipiirin keskipisteen ja kolmivaiheisen kuorman tähtipisteen välinen jännite on nollasta poikkeava aiheuttaen suurentuneen yhteismuotoisen jännitteen taajuusmuuttajan lähtöön ja verkon puolelle. Lisäksi yhteismuotoisten jännitteiden aiheuttamat kytkentätaajuiset häiriövirrat voivat aiheuttaa vikavirtasuojien tahatonta laukeamista, vaikeuttaa EMC-standardien vaatimusten täyttämistä, lisätä moottorin käämieristyksien rasitusta ja mahdollisuutta moottorin laakerivaurioille. Diplomityössä tutkitaan aktiivisen ja passiivisen verkkosillan tuottamaa yhteismuotoista jännitettä simuloinneilla. Esitellään aikaisempaa tutkimustietoa yhteismuotoisen jännitteen ja virran vaimennusratkaisuista aktiivista verkkosiltaa käytettäessä. Tutkimustiedon pohjalta suunnitellaan koelaitteistolle soveltuva suodin. Suotimen toiminta testataan simuloinnein sekä kokeellisin mittauksin. Tehdyt mittaukset osoittavat, että suunniteltu suodin vaimentaa yhteismuotoista jännitettä noin 20 dB verkkosillan kytkentätaajuudella ja tämän jälkeen yli 20 dB/dekadi taajuuteen 100 kHz asti. Lisäksi yhteismuotoisen virran suuruus syöttökaapelin kautta pieneni ehdotetun suotimen vaikutuksesta.
Resumo:
The main goal of this study is to create a seamless chain of actions and more detailed structure to the front end of innovation to be able to increase the front end performance and finally to influence the renewal of companies. The main goal is achieved through by the new concept of an integrated model of early activities of FEI leading to a discovery of new elements of opportunities and the identification of new business and growth areas. The procedure offers one possible solution to a dynamic strategy formation process in innovation development cycle. In this study the front end of innovation is positioned between a strategy reviews and a concept creation with needed procedures, tools, and frameworks. The starting point of the study is that the origins of innovation are not well enough understood. The study focuses attention on the early activities of FEI. These first activities are conceptualized in order to find out successful innovation initiatives and strategic renewal agendas. A seamless chain of activities resulting in faster and more precise identification of opportunities and growth areas available on markets and inside companies is needed. Three case studies were conducted in order to study company views on available theory doctrine and to identify the first practical experiences and procedures in the beginning of the front end of innovation. Successful innovation requires focus on renewal in both internal and external directions and they should be carefully balanced for best results. Instead of inside-out mode of actions the studied companies have a strong outside-in thinking mode and they mainly co-develop their innovation initiatives in close proximity with customers i.e. successful companies are an integral part of customers business and success. Companies have tailor-made innovation processes combined their way of working linked to their business goals, and priorities of actual needs of transformation. The result of this study is a new modular FEI platform which can be configured by companies against their actual business needs and drivers. This platform includes new elements of FEI documenting an architecture presenting how the system components work together. The system is a conceptual approach from theories of emergent strategy formation, opportunity identification and creation, interpretation-analysis-experimentation triad and the present FEI theories. The platform includes new features compared to actual models of FEI. It allows managers to better understand the importance of FEI in the whole innovation development stage and FEI as a phase and procedure to discover and implement emergent strategy. An adaptable company rethinks and redirects strategy proactively from time to time. Different parts of the business model are changed to remove identified obstacles for growth and renewal which gives them avenues to find right reforms for renewal.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.