27 resultados para Mixed fisheries
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.
Resumo:
Summary
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
The aim of this investigation was to analyze the dental occlusion in the deciduous dentition, and the effects of orthodontic treatment carried out in the early mixed dentition with the eruption guidance appliance. The deciduous occlusion and craniofacial morphology of 486 children (244 girls and 242 boys) were investigated at the onset of the mixed dentition period (mean age 5.1 years, range 4.0-7.8 years). Treatment in the treatment group and follow-up in the control group were started when the first deciduous incisor was exfoliated (T1) and ended when all permanent incisors and first molars were fully erupted (T2). The mean age of the children was 5.1 years (SD 0.5) at T1 and 8.4 years (SD 0.5) at T2. Treatment was carried out with the eruption guidance appliance. Occlusal changes that took place in 167 children were compared with those of 104 untreated control children. Pre- and post-treatment cephalometric radiographs were taken, and the craniofacial morphology of 115 consecutively treated children was compared with that of 104 control children. The prevalence of malocclusion in the deciduous dentition was 68% or 93% depending on how the cut-off value between the acceptable and non-acceptable occlusal characteristic was defined. The early dentofacial features of children with distal occlusion, large overjet and deepbite differed from those with normal occlusion. However, the skeletal pattern of these three malocclusions showed considerable similarity each being characterized by a retrusive mandible, small maxillo-mandibular difference, convex profile, retrusive lower incisors, and large interincisal angle. In the treatment group, overjet and overbite decreased significantly from T1 to T2. Following treatment, a tooth-to-tooth contact was found in 99% of the treated children but only in 24% of the controls. A Class I molar relationship was observed in 90% of the children in the treatment group, and in 48% in the control group. Good alignment of the incisors was observed in 98% of the treated children, whereas upper crowding was found in 32% and lower crowding in 47% of the controls. A significant difference between the groups was found in the mandibular length, midfacial length and maxillo-mandibular differential. The occlusal correction, brought about by the eruption guidance appliance, was achieved mainly through changes in the dentoalveolar region of the mandible. In addition, the appliance seemed to enhance the growth of the mandible. Treatment in the early mixed dentition using the eruption guidance appliance is an effective method to normalize occlusion and reduce further need of orthodontic treatment. Only few spontaneous corrective changes can be expected without active intervention.
Resumo:
This master’s thesis is focused on the active magnetic bearings control, specifically the robust control. As carrying out of such kind of control used mixed H2/Hinf controller. So the goal of this work is to design it using Robust Control Toolbox™ in MATLAB and compare it performance and robustness with Hinf robust controller characteristics. But only one degree-of-freedom controller considered.