3 resultados para Mitochondrial fission
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Neuropeptide Y (NPY) is a widely expressed neurotransmitter in the central and peripheral nervous systems. Thymidine 1128 to cytocine substitution in the signal sequence of the preproNPY results in a single amino acid change where leucine is changed to proline. This L7P change leads to a conformational change of the signal sequence which can have an effect on the intracellular processing of NPY. The L7P polymorphism was originally associated with higher total and LDL cholesterol levels in obese subjects. It has also been associated with several other physiological and pathophysiological responses such as atherosclerosis and T2 diabetes. However, the changes on the cellular level due to the preproNPY signal sequence L7P polymorphism were not known. The aims of the current thesis were to study the effects of the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes in primary cultured and genotyped human umbilical vein endothelial cells (HUVEC), in neuroblastoma (SK-N-BE(2)) cells and in fibroblast (CHO-K1) cells. Also, the putative effects of the L7P polymorphism on proliferation, apoptosis and LDL and nitric oxide metabolism were investigated. In the course of the studies a fragment of NPY targeted to mitochondria was found. With the putative mitochondrial NPY fragment the aim was to study the translational preferences and the mobility of the protein. The intracellular distribution of NPY between the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes was found to be different. NPY immunoreactivity was prominent in the [p.L7]+[p.P7] cells while the proNPY immunoreactivity was prominent in the [p.L7]+[p.L7] genotype cells. In the proliferation experiments there was a difference in the [p.L7]+[p.L7] genotype cells between early and late passage (aged) cells; the proliferation was raised in the aged cells. NPY increased the growth of the cells with the [p.L7]+[p.P7] genotype. Apoptosis did not seem to differ between the genotypes, but in the aged cells with the [p.L7]+[p.L7] genotype, LDL uptake was found to be elevated. Furthermore, the genotype seemed to have a strong effect on the nitric oxide metabolism. The results indicated that the mobility of NPY protein inside the cells was increased within the P7 containing constructs. The existence of the mitochondria targeted NPY fragment was verified, and translational preferences were proved to be due to the origin of the cells. Cell of neuronal origin preferred the translation of mature NPY (NPY1-36) when compared to the non neuronal cells that translated both, NPY and the mitochondrial fragment of NPY. The mobility of the mitochondrial fragment was found to be minimal. The functionality of the mitochondrial NPY fragment remains to be investigated. L7P polymorphism in the preproNPY causes a series of intracellular changes. These changes may contribute to the state of cellular senescence, vascular tone and lead to endothelial dysfunction and even to increased susceptibility to diseases, like atherosclerosis and T2 diabetes.
Resumo:
Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.