11 resultados para Mid-latitude

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Väitöksenalkajaisesitelmä

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helsingfors : A.W. Gröndahl & A.C. Öhman 1845 : Dresden, Adler u. Dietze

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.