2 resultados para Metastasis-inducing Protein
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Bidirectional exchange of information between the cancer cells and their environment is essential for cancer to evolve. Cancer cells lose the ability to regulate their growth, gain the ability to detach from neighboring cells and finally some of the cells disseminate from the primary tumor and invade to the adjacent tissue. During cancer progression, cells acquire features that promote cancer motility and proliferation one of them being increased filopodia number. Filopodia are dynamic actin-rich structures extending from the leading edge of migrating cells and the main function of these structures is to serve as environmental sensors. It is nowadays widely appreciated, that not only the cancer cells, but also the surrounding of the tumor – the tumor microenvironment- contribute to cancer cell dissemination and tumor growth. Activated stromal fibroblasts, also known as cancer-associated fibroblasts (CAFs) actively participate on tumor progression. CAFs are the most abundant cell type surrounding the cancer cells and they are the main cell type producing the extracellular matrix (ECM) within tumor stroma. CAFs secrete growth factors to promote tumor growth, direct cancer cell invasion as well as modify the stromal ECM architecture. The aim of this thesis was to investigate the function of filopodia, particularly the role of filopodia-inducing protein Myosin-X (Myo10), in breast cancer cell invasion and metastasis. We found that Myo10 is an important regulator of basal type breast cancer spreading downstream of mutant p53. In addition, I investigated the role of CAFs and their secreted matrix on tumor growth. According to the results, CAF-derived matrix has altered organization and stiffness which induces the carcinoma cell proliferation via epigenetic mechanisms. I identified histone demethylase enzyme JMJD1a to be regulated by the stiffness and to participate in stiffness induced growth control.
Resumo:
This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.