5 resultados para Metallic glasses
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
By alloying metals with other materials, one can modify the metal’s characteristics or compose an alloy which has certain desired characteristics that no pure metal has. The field is vast and complex, and phenomena that govern the behaviour of alloys are numerous. Theories cannot penetrate such complexity, and the scope of experiments is also limited. This is why the relatively new field of ab initio computational methods has much to give to this field. With these methods, one can extend the understanding given by theories, predict how some systems might behave, and be able to obtain information that is not there to see in physical experiments. This thesis pursues to contribute to the collective knowledge of this field in the light of two cases. The first part examines the oxidation of Ag/Cu, namely, the adsorption dynamics and oxygen induced segregation of the surface. Our results demonstrate that the presence of Ag on the Cu(100) surface layer strongly inhibits dissociative adsorption. Our results also confirmed that surface reconstruction does happen, as experiments predicted. Our studies indicate that 0.25 ML of oxygen is enough for Ag to diffuse towards the bulk, under the copper oxide layer. The other part elucidates the complex interplay of various energy and entropy contributions to the phase stability of paramagnetic duplex steel alloys. We were able to produce a phase stability map from first principles, and it agrees with experiments rather well. Our results also show that entropy contributions play a very important role on defining the phase stability. This is, to the author’s knowledge, the first ab initio study upon this subject.
Resumo:
Bioactive glasses are excellent candidates for implant materials, because they can form a chemical bond to bone or guide bone growth, depending on the glass composition. Some compositions have even shown soft tissue attachment and antimicrobial effects. So far, most clinical applications are based on monoliths, plates and particulates of different grain sizes. There is a growing interest in special products such as porous implants sintered from microspheres and fibers drawn from preforms or glass melts. The viscosity range at which these are formed coincides with the crystallization temperature range for most bioactive glasses, thus complicating the manufacturing process. In this work, the crystallization tendency and its kinetics for a series of glasses with their compositions within the range of bioactivity were investigated. The factors affecting crystallization and how it is related to composition were studied by means of thermal analysis and hot stage microscopy. The crystal compositions formed during isothermal and non-isothermal heat treatments were analyzed with SEM-EDXA and X-ray diffraction analysis. The temperatures at which sintering and fiber drawing can take place without interfering with crystallization were determined and glass compositions which are suitable for these purposes were established. The bioactivity of glass fibers and partly crystallized glass plates was studied by soaking them in simulated body fluid (SBF). The thickness of silica, calcium and phosphate rich reaction layers on the glass surface after soaking was used as an indication of the bioactivity. The results indicated that the crystallization tendencies of the experimental glasses are strongly dependent on composition. The main factor affecting the crystallization was found to be the alkali oxide content: the higher the alkali oxide content the lower the crystallization temperature. The primary crystalline phase formed at low temperatures in these glasses was sodium calcium silicate. The crystals were found to form through internal nucleation, leading to bulk crystallization. These glasses had high bioactivity in vitro. Even when partially crystalline, they formed typical reaction layers, indicating bioactivity. In fact, sodium calcium silicate crystals were shown to transform in vitro into hydroxyapatite during soaking. However, crystallization should be avoided because it was shown to retard dissolution, bioactivity reactions and complicate fiber drawing process. Glass compositions having low alkali oxide content showed formation of wollastonite crystals on the surface, at about 300°C above the glass transition temperature. The wide range between glass transition and crystallization allowed viscous flow sintering of these compositions. These glasses also withstood the thermal treatments required for fiber drawing processing. Precipitation of calcium and phosphate on fibers of these glasses in SBF suggested that they were osteoconductive. Glasses showing bioactivity crystallize easily, making their hot working challenging. Undesired crystallization can be avoided by choosing suitable compositions and heat treatment parameters, allowing desired product forms to be attained. Small changes in the oxide composition of the glass can have large effects and therefore a thorough understanding of glass crystallization behavior is a necessity for a successful outcome, when designing and manufacturing implants containing bioactive glasses.
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project, which aims to research and develop manufacturing techniques, especially welding, for Arctic areas. The main target of this paper is to clarify what kind of European metallic materials are used, or can be used, in Arctic. These materials include mainly carbon steels but also stainless steels and aluminium and its alloys. Standardized materials, their properties and also some recent developments are being introduced. Based on this thesis it can be said that carbon steels (shipbuilding and pipeline steels) have been developed based on needs of industry and steels exist, which can be used in Arctic areas. Still, these steels cannot be fully benefited, because rules and standards are under development. Also understanding of fracture behavior of new ultra high strength steels is not yet good enough, which means that research methods (destructive and non-destructive methods) need to be developed too. The most of new nickel-free austenitic and austenitic-ferritic stainless steels can be used in cold environment. Ferritic and martensitic stainless steels are being developed for better weldability and these steels are mainly developed in nuclear industry. Aluminium alloys are well suitable for subzero environment and these days high strength aluminium alloys are available also as thick sheets. Nanotechnology makes it possible to manufacture steels, stainless steels and aluminium alloys with even higher strength. Joining techniques needs to be developed and examined properly to achieve economical and safe way to join these modern alloys.
Resumo:
Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.
Resumo:
Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.