3 resultados para Mesoporous Aluminosilicates, non-surfactant, hydrothermal stability
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Influence of surface functionalization on the behavior of silica nanoparticles in biological systems
Resumo:
Personalized nanomedicine has been shown to provide advantages over traditional clinical imaging, diagnosis, and conventional medical treatment. Using nanoparticles can enhance and clarify the clinical targeting and imaging, and lead them exactly to the place in the body that is the goal of treatment. At the same time, one can reduce the side effects that usually occur in the parts of the body that are not targets for treatment. Nanoparticles are of a size that can penetrate into cells. Their surface functionalization offers a way to increase their sensitivity when detecting target molecules. In addition, it increases the potential for flexibility in particle design, their therapeutic function, and variation possibilities in diagnostics. Mesoporous nanoparticles of amorphous silica have attractive physical and chemical characteristics such as particle morphology, controllable pore size, and high surface area and pore volume. Additionally, the surface functionalization of silica nanoparticles is relatively straightforward, which enables optimization of the interaction between the particles and the biological system. The main goal of this study was to prepare traceable and targetable silica nanoparticles for medical applications with a special focus on particle dispersion stability, biocompatibility, and targeting capabilities. Nanoparticle properties are highly particle-size dependent and a good dispersion stability is a prerequisite for active therapeutic and diagnostic agents. In the study it was shown that traceable streptavidin-conjugated silica nanoparticles which exhibit a good dispersibility could be obtained by the suitable choice of a proper surface functionalization route. Theranostic nanoparticles should exhibit sufficient hydrolytic stability to effectively carry the medicine to the target cells after which they should disintegrate and dissolve. Furthermore, the surface groups should stay at the particle surface until the particle has been internalized by the cell in order to optimize cell specificity. Model particles with fluorescently-labeled regions were tested in vitro using light microscopy and image processing technology, which allowed a detailed study of the disintegration and dissolution process. The study showed that nanoparticles degrade more slowly outside, as compared to inside the cell. The main advantage of theranostic agents is their successful targeting in vitro and in vivo. Non-porous nanoparticles using monoclonal antibodies as guiding ligands were tested in vitro in order to follow their targeting ability and internalization. In addition to the targeting that was found successful, a specific internalization route for the particles could be detected. In the last part of the study, the objective was to clarify the feasibility of traceable mesoporous silica nanoparticles, loaded with a hydrophobic cancer drug, being applied for targeted drug delivery in vitro and in vivo. Particles were provided with a small molecular targeting ligand. In the study a significantly higher therapeutic effect could be achieved with nanoparticles compared to free drug. The nanoparticles were biocompatible and stayed in the tumor for a longer time than a free medicine did, before being eliminated by renal excretion. Overall, the results showed that mesoporous silica nanoparticles are biocompatible, biodegradable drug carriers and that cell specificity can be achieved both in vitro and in vivo.
Resumo:
Due to diminishing petroleum reserves, unsteady market situation and the environmental concerns associated with utilization of fossil resources, the utilization of renewables for production of energy and chemicals (biorefining) has gained considerable attention. Biomass is the only sustainable source of organic compounds that has been proposed as petroleum equivalent for the production of fuels, chemicals and materials. In fact, it would not be wrong to say that the only viable answer to sustainably convene our future energy and material requirements remain with a bio-based economy with biomass based industries and products. This has prompted biomass valorization (biorefining) to become an important area of industrial research. While many disciplines of science are involved in the realization of this effort, catalysis and knowledge of chemical technology are considered to be particularly important to eventually render this dream to come true. Traditionally, the catalyst research for biomass conversion has been focused primarily on commercially available catalysts like zeolites, silica and various metals (Pt, Pd, Au, Ni) supported on zeolites, silica etc. Nevertheless, the main drawbacks of these catalysts are coupled with high material cost, low activity, limited reusability etc. – all facts that render them less attractive in industrial scale applications (poor activity for the price). Thus, there is a particular need to develop active, robust and cost efficient catalytic systems capable of converting complex biomass molecules. Saccharification, esterification, transesterification and acetylation are important chemical processes in the valorization chain of biomasses (and several biomass components) for production of platform chemicals, transportation fuels, food additives and materials. In the current work, various novel acidic carbons were synthesized from wastes generated from biodiesel and allied industries, and employed as catalysts in the aforementioned reactions. The structure and surface properties of the novel materials were investigated by XRD, XPS, elemental analysis, SEM, TEM, TPD and N2-physisorption techniques. The agro-industrial waste derived sulfonic acid functionalized novel carbons exhibit excellent catalytic activity in the aforementioned reactions and easily outperformed liquid H2SO4 and conventional solid acids (zeolites, ion-exchange resins etc). The experimental results indicated strong influence of catalyst pore-structure (pore size, pore-volume), concentration of –SO3H groups and surface properties in terms of the activity and selectivity of these catalysts. Here, a large pore catalyst with high –SO3H density exhibited the highest esterification and transesterification activity, and was successfully employed in biodiesel production from fatty acids and low grade acidic oils. Also, a catalyst decay model was proposed upon biodiesel production and could explain that the catalyst loses its activity mainly due to active site blocking by adsorption of impurities and by-products. The large pore sulfonated catalyst also exhibited good catalytic performance in the selective synthesis of triacetin via acetylation of glycerol with acetic anhydride and out-performed the best zeolite H-Y with respect to reusability. It also demonstrated equally good activity in acetylation of cellulose to soluble cellulose acetates, with the possibility to control cellulose acetate yield and quality (degree of substitution, DS) by a simple adjustment of reaction time and acetic anhydride concentration. In contrast, the small pore and highly functionalized catalysts obtained by hydrothermal method and from protein rich waste (Jatropha de-oiled waste cake, DOWC), were active and selective in the esterification of glycerol with fatty acids to monoglycerides and saccharification of cellulosic materials, respectively. The operational stability and reusability of the catalyst was found to depend on the stability of –SO3H function (leaching) as well as active site blocking due to adsorption of impurities during the reaction. Thus, our results corroborate the potential of DOWC derived sulfated mesoporous active carbons as efficient integrated solid acid catalysts for valorization of biomass to platform chemicals, biofuel, bio-additive, surfactants and celluloseesters.