5 resultados para Mean Residual Life
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
It is commonly observed that complex fabricated structures subject tofatigue loading fail at the welded joints. Some problems can be corrected by proper detail design but fatigue performance can also be improved using post-weld improvement methods. In general, improvement methods can be divided into two main groups: weld geometry modification methods and residual stress modification methods. The former remove weld toe defects and/or reduce the stress concentrationwhile the latter introduce compressive stress fields in the area where fatigue cracks are likely to initiate. Ultrasonic impact treatment (UIT) is a novel post-weld treatment method that influences both the residual stress distribution andimproves the local geometry of the weld. The structural fatigue strength of non-load carrying attachments in the as-welded condition has been experimentally compared to the structural fatigue strength of ultrasonic impact treated welds. Longitudinal attachment specimens made of two thicknesses of steel S355 J0 have been tested for determining the efficiency of ultrasonic impacttreatment. Treated welds were found to have about 50% greater structural fatigue strength, when the slope of the S-N-curve is three. High mean stress fatigue testing based on the Ohta-method decreased the degree of weld improvement only 19%. This indicated that the method could be also applied for large fabricated structures operating under high reactive residual stresses equilibrated within the volume of the structure. The thickness of specimens has no significant effect tothe structural fatigue strength. The fatigue class difference between 5 mm and 8 mm specimen was only 8%. It was hypothesized that the UIT method added a significant crack initiation period to the total fatigue life of the welded joints. Crack initiation life was estimated by a local strain approach. Material parameters were defined using a modified Uniform Material Law developed in Germany. Finite element analysis and X-ray diffraction were used to define, respectively, the stress concentration and mean stress. The theoretical fatigue life was found to have good accuracy comparing to experimental fatigue tests.The predictive behaviour of the local strain approach combined with the uniformmaterial law was excellent for the joint types and conditions studied in this work.
Resumo:
The aims of this study were to validate an international Health-Related Quality of Life (HRQL) instrument, to describe child self and parent-proxy assessed HRQL at child age 10 to 12 and to compare child self assessments with parent-proxy assessments and school nursing documentation. The study is part of the Schools on the Move –research project. In phase one, a cross-cultural translation and validation process was performed to develop a Finnish version of Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0). The process included a two-way translation, cognitive interviews (children n=7, parents n=5) and a survey (children n=1097, parents n=999). In phase two, baseline and follow-up surveys (children n=986, parents n=710) were conducted to describe and compare the child self and parent-proxy assessed HRQL in school children between the ages 10 and 12. Phase three included two separate data, school nurse documented patient records (children n=270) and a survey (children n=986). The relation between child self assessed HRQL and school nursing documentation was evaluated. Validity and reliability of the Finnish version of PedsQL™ 4.0 was good (Child Self Report α=0.91, Parent-Proxy Report α=0.88). Children reported lower HRQL scores at the emotional (mean 76/80) than the physical (mean 85/89) health domains and significantly lower scores at the age of 10 than 12 (dMean=4, p=<0.001). Agreement between child self and parent-proxy assessment was fragile (r=0,4, p=<0.001) but increased as the child grew from age 10 to 12 years. At health check-ups, school nurses documented frequently children’s physical health, such as growth (97%) and posture (98/99%) but seldom emotional issues, such as mood (2/7%). The PedsQLTM 4.0 is a valid instrument to assess HRQL in Finnish school children although future research is recommended. Children’s emotional wellbeing needs future attention. HRQL scores increase during ages between childhood and adolescence. Concordance between child self and parent-proxy assessed HRQL is low. School nursing documentation, related to child health check-ups, is not in line with child self assessed HRQL and emotional issues need more attention.
Resumo:
The purpose of this Finnish epidemiological nationwide cross-sectional study was to evaluate the Health Related Quality of Life (HRQL) of young people that have survived childhood cancer at least four years after cancer diagnosis. The study aims were (1) to increase knowledge and understanding about the relationship between childhood cancer and its treatment and HRQL of childhood cancer survivors and (2) to identify survivors who need and could benefit from ongoing long-term follow-up, as well as (3) to identify what kind of aftercare the childhood cancer survivors will possibly need. HRQL and fatigue of currently still young survivors of extracranial childhood malignancies were evaluated with self-reports and parent proxy reports. HRQL was measured with age-appropriate generic instruments: PedsQL™, SF-36, 15D, 16D and 17D. Fatigue for children and adolescents aged below 18 years was measured with the PedsQL™ Multidimensional Fatigue Scale Finnish version. PedsQL™ parent-proxy and the PedsQL™ Multidimensional Fatigue Scale Parentproxy instruments were used to assess the perception of the parents on HRQL and fatigue of their children and adolescents. Postal-survey questionnaires were mailed to 852 childhood cancer survivors aged 11-27 years and their randomly selected gender-, age and living-place matched controls, as well as under 18-year-old children´s parents. A total of 474 survivors, 595 controls, 209 survivor’s parent and 253 control’s parent replied. The mean age of survivors at the time of the study was 18.4 years. The mean length of survival was 12.3 years, and the mean age at diagnosis 5.5 years. The most of the Finnish childhood cancer survivors evaluated that their HRQL as good. Survivors rated their HRQL equal or higher than their controls. The only dimension where the survivors scored poorer than the controls was the 15D mobility dimension. Survivors of childhood cancer did not suffer from significant fatigue. There were subgroups of childhood cancer survivors who had poorer level of HRQL, and suffered from fatigue more than the reference group. The demographic factors that associated with poorer HRQL were female gender, greater weight, living alone, need of remedial education, an additional non-cancer diagnosis, survivors with siblings, and self-reported unhappiness. Disease-related factors that associated with poorer HRQL were higher age at the time of diagnosis, the diagnosis of Wilms tumor, neuroblastoma, or osteosarcoma, and treatment with stem cell transplantation. The factors associated with more fatigue in survivors were male gender, older age at evaluation, the need of remedial education at school, lower overall average grade in the latest school marks report, length of survival more than 10 years, lower HRQL-scores, and a sarcoma diagnosis. However, all the used demographic and disease related factors explained only about one third of the variation in the HRQL scores. In open questions, the survivors were most worried about their physical health, but were also worried about their mental health, cancer inheritance, late-effects, and fertility and relapse issues. It seems that there are subgroups of survivors who need and could benefit from ongoing long-term follow-up. In the future, the survivors of childhood cancer need more information about their physical and mental health, as well as on their cancer inheritance, possible late-effects including fertility issues, and on the risk of relapse.
Resumo:
Welding has a growing role in modern world manufacturing. Welding joints are extensively used from pipes to aerospace industries. Prediction of welding residual stresses and distortions is necessary for accurate evaluation of fillet welds in relation to design and safety conditions. Residual stresses may be beneficial or detrimental, depending whether they are tensile or compressive and the loading. They directly affect the fatigue life of the weld by impacting crack growth rate. Beside theoretical background of residual stresses this study calculates residual stresses and deformations due to localized heating by welding process and subsequent rapid cooling in fillet welds. Validated methods are required for this purpose due to complexity of process, localized heating, temperature dependence of material properties and heat source. In this research both empirical and simulation methods were used for the analysis of welded joints. Finite element simulation has become a popular tool of prediction of welding residual stresses and distortion. Three different cases with and without preload have been modeled during this study. Thermal heat load set is used by calculating heat flux from the given heat input energy. First the linear and then nonlinear material behavior model is modeled for calculation of residual stresses. Experimental work is done to calculate the stresses empirically. The results from both the methods are compared to check their reliability. Residual stresses can have a significant effect on fatigue performance of the welded joints made of high strength steel. Both initial residual stress state and subsequent residual stress relaxation need to be considered for accurate description of fatigue behavior. Tensile residual stresses are detrimental and will reduce the fatigue life and compressive residual stresses will increase it. The residual stresses follow the yield strength of base or filler material and the components made of high strength steel are typically thin, where the role of distortion is emphasizing.
Resumo:
The steel industry produces, besides steel, also solid mineral by-products or slags, while it emits large quantities of carbon dioxide (CO2). Slags consist of various silicates and oxides which are formed in chemical reactions between the iron ore and the fluxing agents during the high temperature processing at the steel plant. Currently, these materials are recycled in the ironmaking processes, used as aggregates in construction, or landfilled as waste. The utilization rate of the steel slags can be increased by selectively extracting components from the mineral matrix. As an example, aqueous solutions of ammonium salts such as ammonium acetate, chloride and nitrate extract calcium quite selectively already at ambient temperature and pressure conditions. After the residual solids have been separated from the solution, calcium carbonate can be precipitated by feeding a CO2 flow through the solution. Precipitated calcium carbonate (PCC) is used in different applications as a filler material. Its largest consumer is the papermaking industry, which utilizes PCC because it enhances the optical properties of paper at a relatively low cost. Traditionally, PCC is manufactured from limestone, which is first calcined to calcium oxide, then slaked with water to calcium hydroxide and finally carbonated to PCC. This process emits large amounts of CO2, mainly because of the energy-intensive calcination step. This thesis presents research work on the scale-up of the above-mentioned ammonium salt based calcium extraction and carbonation method, named Slag2PCC. Extending the scope of the earlier studies, it is now shown that the parameters which mainly affect the calcium utilization efficiency are the solid-to-liquid ratio of steel slag and the ammonium salt solvent solution during extraction, the mean diameter of the slag particles, and the slag composition, especially the fractions of total calcium, silicon, vanadium and iron as well as the fraction of free calcium oxide. Regarding extraction kinetics, slag particle size, solid-to-liquid ratio and molar concentration of the solvent solution have the largest effect on the reaction rate. Solvent solution concentrations above 1 mol/L NH4Cl cause leaching of other elements besides calcium. Some of these such as iron and manganese result in solution coloring, which can be disadvantageous for the quality of the PCC product. Based on chemical composition analysis of the produced PCC samples, however, the product quality is mainly similar as in commercial products. Increasing the novelty of the work, other important parameters related to assessment of the PCC quality, such as particle size distribution and crystal morphology are studied as well. As in traditional PCC precipitation process, the ratio of calcium and carbonate ions controls the particle shape; a higher value for [Ca2+]/[CO32-] prefers precipitation of calcite polymorph, while vaterite forms when carbon species are present in excess. The third main polymorph, aragonite, is only formed at elevated temperatures, above 40-50 °C. In general, longer precipitation times cause transformation of vaterite to calcite or aragonite, but also result in particle agglomeration. The chemical equilibrium of ammonium and calcium ions and dissolved ammonia controlling the solution pH affects the particle sizes, too. Initial pH of 12-13 during the carbonation favors nonagglomerated particles with a diameter of 1 μm and smaller, while pH values of 9-10 generate more agglomerates of 10-20 μm. As a part of the research work, these findings are implemented in demonstrationscale experimental process setups. For the first time, the Slag2PCC technology is tested in scale of ~70 liters instead of laboratory scale only. Additionally, design of a setup of several hundreds of liters is discussed. For these purposes various process units such as inclined settlers and filters for solids separation, pumps and stirrers for material transfer and mixing as well as gas feeding equipment are dimensioned and developed. Overall emissions reduction of the current industrial processes and good product quality as the main targets, based on the performed partial life cycle assessment (LCA), it is most beneficial to utilize low concentration ammonium salt solutions for the Slag2PCC process. In this manner the post-treatment of the products does not require extensive use of washing and drying equipment, otherwise increasing the CO2 emissions of the process. The low solvent concentration Slag2PCC process causes negative CO2 emissions; thus, it can be seen as a carbon capture and utilization (CCU) method, which actually reduces the anthropogenic CO2 emissions compared to the alternative of not using the technology. Even if the amount of steel slag is too small for any substantial mitigation of global warming, the process can have both financial and environmental significance for individual steel manufacturers as a means to reduce the amounts of emitted CO2 and landfilled steel slag. Alternatively, it is possible to introduce the carbon dioxide directly into the mixture of steel slag and ammonium salt solution. The process would generate a 60-75% pure calcium carbonate mixture, the remaining 25-40% consisting of the residual steel slag. This calcium-rich material could be re-used in ironmaking as a fluxing agent instead of natural limestone. Even though this process option would require less process equipment compared to the Slag2PCC process, it still needs further studies regarding the practical usefulness of the products. Nevertheless, compared to several other CO2 emission reduction methods studied around the world, the within this thesis developed and studied processes have the advantage of existing markets for the produced materials, thus giving also a financial incentive for applying the technology in practice.