2 resultados para Matrix-Variate Statistical Distributions

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämä diplomityö liittyy Spektrikuvien tutkimiseen tilastollisen kuvamallin näkökulmasta. Diplomityön ensimmäisessä osassa tarkastellaan tilastollisten parametrien jakaumien vaikutusta väreihin ja korostumiin erilaisissa valaistusolosuhteissa. Havaittiin, että tilastollisten parametrien väliset suhteet eivät riipu valaistusolosuhteista, mutta riippuvat kuvan häiriöttömyydestä. Ilmeni myös, että korkea huipukkuus saattaa aiheutua värikylläisyydestä. Lisäksi työssä kehitettiin tilastolliseen spektrimalliin perustuvaa tekstuurinyhdistämisalgoritmia. Sillä saavutettiin hyviä tuloksia, kun tilastollisten parametrien väliset riippuvuussuhteet olivat voimassa. Työn toisessa osassa erilaisia spektrikuvia tutkittiin käyttäen itsenäistä komponenttien analyysia (ICA). Seuraavia itsenäiseen komponenttien analyysiin tarkoitettuja algoritmia tarkasteltiin: JADE, kiinteän pisteen ICA ja momenttikeskeinen ICA. Tutkimuksissa painotettiin erottelun laatua. Paras erottelu saavutettiin JADE- algoritmilla, joskin erot muiden algoritmien välillä eivät olleet merkittäviä. Algoritmi jakoi kuvan kahteen itsenäiseen, joko korostuneeseen ja korostumattomaan tai kromaattiseen ja akromaattiseen, komponenttiin. Lopuksi pohditaan huipukkuuden suhdetta kuvan ominaisuuksiin, kuten korostuneisuuteen ja värikylläisyyteen. Työn viimeisessä osassa ehdotetaan mahdollisia jatkotutkimuskohteita.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the X-ray tomography is discussed from the Bayesian statistical viewpoint. The unknown parameters are assumed random variables and as opposite to traditional methods the solution is obtained as a large sample of the distribution of all possible solutions. As an introduction to tomography an inversion formula for Radon transform is presented on a plane. The vastly used filtered backprojection algorithm is derived. The traditional regularization methods are presented sufficiently to ground the Bayesian approach. The measurements are foton counts at the detector pixels. Thus the assumption of a Poisson distributed measurement error is justified. Often the error is assumed Gaussian, altough the electronic noise caused by the measurement device can change the error structure. The assumption of Gaussian measurement error is discussed. In the thesis the use of different prior distributions in X-ray tomography is discussed. Especially in severely ill-posed problems the use of a suitable prior is the main part of the whole solution process. In the empirical part the presented prior distributions are tested using simulated measurements. The effect of different prior distributions produce are shown in the empirical part of the thesis. The use of prior is shown obligatory in case of severely ill-posed problem.