126 resultados para Mathematical Processes

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis in focused on the minimization of experimental efforts for the prediction of pollutant propagation in rivers by mathematical modelling and knowledge re-use. Mathematical modelling is based on the well known advection-dispersion equation, while the knowledge re-use approach employs the methods of case based reasoning, graphical analysis and text mining. The thesis contribution to the pollutant transport research field consists of: (1) analytical and numerical models for pollutant transport prediction; (2) two novel techniques which enable the use of variable parameters along rivers in analytical models; (3) models for the estimation of pollutant transport characteristic parameters (velocity, dispersion coefficient and nutrient transformation rates) as functions of water flow, channel characteristics and/or seasonality; (4) the graphical analysis method to be used for the identification of pollution sources along rivers; (5) a case based reasoning tool for the identification of crucial information related to the pollutant transport modelling; (6) and the application of a software tool for the reuse of information during pollutants transport modelling research. These support tools are applicable in the water quality research field and in practice as well, as they can be involved in multiple activities. The models are capable of predicting pollutant propagation along rivers in case of both ordinary pollution and accidents. They can also be applied for other similar rivers in modelling of pollutant transport in rivers with low availability of experimental data concerning concentration. This is because models for parameter estimation developed in the present thesis enable the calculation of transport characteristic parameters as functions of river hydraulic parameters and/or seasonality. The similarity between rivers is assessed using case based reasoning tools, and additional necessary information can be identified by using the software for the information reuse. Such systems represent support for users and open up possibilities for new modelling methods, monitoring facilities and for better river water quality management tools. They are useful also for the estimation of environmental impact of possible technological changes and can be applied in the pre-design stage or/and in the practical use of processes as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrometallurgical process modeling is the main objective of this Master’s thesis work. Three different leaching processes namely, high pressure pyrite oxidation, direct oxidation zinc concentrate (sphalerite) leaching and gold chloride leaching using rotating disc electrode (RDE) are modeled and simulated using gPROMS process simulation program in order to evaluate its model building capabilities. The leaching mechanism in each case is described in terms of a shrinking core model. The mathematical modeling carried out included process model development based on available literature, estimation of reaction kinetic parameters and assessment of the model reliability by checking the goodness fit and checking the cross correlation between the estimated parameters through the use of correlation matrices. The estimated parameter values in each case were compared with those obtained using the Modest simulation program. Further, based on the estimated reaction kinetic parameters, reactor simulation and modeling for direct oxidation zinc concentrate (sphalerite) leaching is carried out in Aspen Plus V8.6. The zinc leaching autoclave is based on Cominco reactor configuration and is modeled as a series of continuous stirred reactors (CSTRs). The sphalerite conversion is calculated and a sensitivity analysis is carried out so to determine the optimum reactor operation temperature and optimum oxygen mass flow rate. In this way, the implementation of reaction kinetic models into the process flowsheet simulation environment has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on kuvata tiedonkulkua projektiliiketoimintaa harjoittavassa yrityksessä sekä analysoida kuvausta määrittäen mahdolliset kehityskohdat. Työssätuotetut kuvaukset ja kehityskohtien määrittäminen toimivat pohjana yrityksen kehittäessä projektien hallintaansa tulevaisuudessa. Työssä valitaan tietojohtamisen näkökulma sopivaksi lähestymistavaksi yrityksen toiminnananalysointiin. Haastatteluin kerätyn tutkimusmateriaalin perusteella luodaan prosessikuvaukset jotka mallintavat tietovirtoja yrityksen projektien aikana tapahtuvien prosessien välillä. Kuvausta peilataan tietämyksen luomisen sekä projektien tietojohtamisen teoriaan ja määritetään kehityskohteita. Kehityskohteiden määrittämisen lisäksi ehdotetaan mahdollisia toimenpiteitä tiedon ja tietämyksen hallinnan kehittämiseksi. Kokemusten ja opittujen asioiden sekäpalautteen kerääminen projektien aikana sekä niiden jälkeen havaittiin tärkeimmäksi kehityskohdaksi. Näiden keräämisen voidaan todeta vaativan järjestelmällisyyttä jotta projektien onnistumiset sekä niissä saavutetut parannukset voidaan toistaa jatkossa ja virheet sekä epäonnistumiset sitä vastoin välttää.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liikevaihdon orgaaninen kasvu on ensisijainen tekijä ja haaste yritysjohdolle yrityksen omistaja-arvon kasvattamiseksi. Tutkimus tarkastelee suosivatko suomalaisyritykset pääasiallisesti olemassa olevaa liiketoimintaa palvelevia innovaatioita vai tukevatko nykyhetken toimintatavat myös uusia kasvua kiihdyttäviä radikaaleja innovaatioita. Lisäksi työ kartoitti suomalaisyritysten innovaatioprosessien kehitysalueita käyttäen itsearviointitutkimusta.Tulokset johtivat kolmeen johtopäätökseen. Tutkimus osoitti, että vastaajayritykset ovat keskittyneet innovaatiotoiminnassaan vahvasti ydinliiketoimintaansa, jättäen potentiaaliset kasvumahdollisuudet huomioimatta. Yritykset tavoittelevat maksimaalisia tuottoja keskittymällä tuotteidensa korkeaan suorituskykyyn. Lyhyen aikavälin epärealistiset tuotto-odotukset sekä projekteille suunnatut arviointikriteerit rajoittavat liiketoimintaa mullistavien radikaalien innovaatioiden kehittymistä organisaatiossa. Toiseksi, tutkimus osoitti, että suuri osa yrityksistä käyttää perinteisen projektien arviointi- ja kehitysprosessin lisäksi vaihtoehtoisia ja huonosti kontrolloitavissa olevia kehitysprosesseja, mikäli projektille annetaan kielteinen rahoituspäätös standardin prosessin sisällä. Kolmanneksi, suomalaisyritysten innovaatioprosesseissa paljastui merkittäviä puutteita mitattavien elementtien suhteen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yrityksen laajentuessa kansainvälisesti, olemassa olevat rutiinit jäävät vanhoiksi ja liiketoimintaprosessien johtaminen muuttuu. Kyseisten prosessien täytyy olla läpinäkyviä ja tietovirtojen hyvin suunniteltuja. Prosessien harmonisointi aiheuttaa haasteita yrityksessä ja konsernin etu tulee ottaa huomioon. Ahlstrom konserni laajentuu merkittävästi kaikilla liiketoiminta-alueillaan ja kansainvälinen laajentuminen vie Ahlstrom Glassfibre Oy:n täysin uuteen tilanteeseen. Liiketoimintaprosessien johtamiseen vaikuttavat konsernin ohjaus, mahdollisuudet muutosten implementoimiseksi, toimintaympäristön tekijät ja järjestelmien muodostama arkkitehtuuri. Tässä tutkimuksessa keskitytään ydinprosessien tietovirtoihin ja työ on tehty Karhulan tehtaalla Suomessa. Johtamismallin luomiseksi vaaditaan yrityksessä ongelmia määrittelevää työskentelyä. Tämä ongelmanmääritys oli työn tärkein tavoite. Ongelma-alueiden tutkimuksen pohjalta muodostettiin ratkaisu, jossa käsiteltiin systemaattisen liiketoimintaprosessien johtamisen mahdollisuuksia ja vaatimuksia. Lopputuloksena voidaan todeta, että suurin painopiste löytyy informaatioteknologian ja liiketoiminnan rajapinnoista. Tähän työhön liittyvät myös prossien harmonisointi ja integrointi.