5 resultados para Markov Population Processes

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal birds are an integral part of coastal ecosystems, which nowadays are subject to severe environmental pressures. Effective measures for the management and conservation of seabirds and their habitats call for insight into their population processes and the factors affecting their distribution and abundance. Central to national and international management and conservation measures is the availability of accurate data and information on bird populations, as well as on environmental trends and on measures taken to solve environmental problems. In this thesis I address different aspects of the occurrence, abundance, population trends and breeding success of waterbirds breeding on the Finnish coast of the Baltic Sea, and discuss the implications of the results for seabird monitoring, management and conservation. In addition, I assess the position and prospects of coastal bird monitoring data, in the processing and dissemination of biodiversity data and information in accordance with the Convention on Biological Diversity (CBD) and other national and international commitments. I show that important factors for seabird habitat selection are island area and elevation, water depth, shore openness, and the composition of island cover habitats. Habitat preferences are species-specific, with certain similarities within species groups. The occurrence of the colonial Arctic Tern (Sterna paradisaea) is partly affected by different habitat characteristics than its abundance. Using long-term bird monitoring data, I show that eutrophication and winter severity have reduced the populations of several Finnish seabird species. A major demographic factor through which environmental changes influence bird populations is breeding success. Breeding success can function as a more rapid indicator of sublethal environmental impacts than population trends, particularly for long-lived and slowbreeding species, and should therefore be included in coastal bird monitoring schemes. Among my target species, local breeding success can be shown to affect the populations of the Mallard (Anas platyrhynchos), the Eider (Somateria mollissima) and the Goosander (Mergus merganser) after a time lag corresponding to their species-specific recruitment age. For some of the target species, the number of individuals in late summer can be used as an easier and more cost-effective indicator of breeding success than brood counts. My results highlight that the interpretation and application of habitat and population studies require solid background knowledge of the ecology of the target species. In addition, the special characteristics of coastal birds, their habitats, and coastal bird monitoring data have to be considered in the assessment of their distribution and population trends. According to the results, the relationships between the occurrence, abundance and population trends of coastal birds and environmental factors can be quantitatively assessed using multivariate modelling and model selection. Spatial data sets widely available in Finland can be utilised in the calculation of several variables that are relevant to the habitat selection of Finnish coastal species. Concerning some habitat characteristics field work is still required, due to a lack of remotely sensed data or the low resolution of readily available data in relation to the fine scale of the habitat patches in the archipelago. While long-term data sets exist for water quality and weather, the lack of data concerning for instance the food resources of birds hampers more detailed studies of environmental effects on bird populations. Intensive studies of coastal bird species in different archipelago areas should be encouraged. The provision and free delivery of high-quality coastal data concerning bird populations and their habitats would greatly increase the capability of ecological modelling, as well as the management and conservation of coastal environments and communities. International initiatives that promote open spatial data infrastructures and sharing are therefore highly regarded. To function effectively, international information networks, such as the biodiversity Clearing House Mechanism (CHM) under the CBD, need to be rooted at regional and local levels. Attention should also be paid to the processing of data for higher levels of the information hierarchy, so that data are synthesized and developed into high-quality knowledge applicable to management and conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior. Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established. The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents models and methods that have been used in producing forecasts of population growth. The work is intended to emphasize the reliability bounds of the model forecasts. Leslie model and various versions of logistic population models are presented. References to literature and several studies are given. A lot of relevant methodology has been developed in biological sciences. The Leslie modelling approach involves the use of current trends in mortality,fertility, migration and emigration. The model treats population divided in age groups and the model is given as a recursive system. Other group of models is based on straightforward extrapolation of census data. Trajectories of simple exponential growth function and logistic models are used to produce the forecast. The work presents the basics of Leslie type modelling and the logistic models, including multi- parameter logistic functions. The latter model is also analysed from model reliability point of view. Bayesian approach and MCMC method are used to create error bounds of the model predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.