9 resultados para Markerless motion analysis
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
Granular flow phenomena are frequently encountered in the design of process and industrial plants in the traditional fields of the chemical, nuclear and oil industries as well as in other activities such as food and materials handling. Multi-phase flow is one important branch of the granular flow. Granular materials have unusual kinds of behavior compared to normal materials, either solids or fluids. Although some of the characteristics are still not well-known yet, one thing is confirmed: the particle-particle interaction plays a key role in the dynamics of granular materials, especially for dense granular materials. At the beginning of this thesis, detailed illustration of developing two models for describing the interaction based on the results of finite-element simulation, dimension analysis and numerical simulation is presented. The first model is used to describing the normal collision of viscoelastic particles. Based on some existent models, more parameters are added to this model, which make the model predict the experimental results more accurately. The second model is used for oblique collision, which include the effects from tangential velocity, angular velocity and surface friction based on Coulomb's law. The theoretical predictions of this model are in agreement with those by finite-element simulation. I n the latter chapters of this thesis, the models are used to predict industrial granular flow and the agreement between the simulations and experiments also shows the validation of the new model. The first case presents the simulation of granular flow passing over a circular obstacle. The simulations successfully predict the existence of a parabolic steady layer and show how the characteristics of the particles, such as coefficients of restitution and surface friction affect the separation results. The second case is a spinning container filled with granular material. Employing the previous models, the simulation could also reproduce experimentally observed phenomena, such as a depression in the center of a high frequency rotation. The third application is about gas-solid mixed flow in a vertically vibrated device. Gas phase motion is added to coherence with the particle motion. The governing equations of the gas phase are solved by using the Large eddy simulation (LES) and particle motion is predicted by using the Lagrangian method. The simulation predicted some pattern formation reported by experiment.
Resumo:
The human motion study, which relies on mathematical and computational models ingeneral, and multibody dynamic biomechanical models in particular, has become asubject of many recent researches. The human body model can be applied to different physical exercises and many important results such as muscle forces, which are difficult to be measured through practical experiments, can be obtained easily. In the work, human skeletal lower limb model consisting of three bodies in build using the flexible multibody dynamics simulation approach. The floating frame of reference formulation is used to account for the flexibility in the bones of the human lower limb model. The main reason of considering the flexibility inthe human bones is to measure the strains in the bone result from different physical exercises. It has been perceived the bone under strain will become stronger in order to cope with the exercise. On the other hand, the bone strength is considered and important factors in reducing the bone fractures. The simulation approach and model developed in this work are used to measure the bone strain results from applying raising the sole of the foot exercise. The simulation results are compared to the results available in literature. The comparison shows goof agreement. This study sheds the light on the importance of using the flexible multibody dynamic simulation approach to build human biomechanical models, which can be used in developing some exercises to achieve the optimalbone strength.
Resumo:
Belt-drive systems have been and still are the most commonly used power transmission form in various applications of different scale and use. The peculiar features of the dynamics of the belt-drives include highly nonlinear deformation,large rigid body motion, a dynamical contact through a dry friction interface between the belt and pulleys with sticking and slipping zones, cyclic tension of the belt during the operation and creeping of the belt against the pulleys. The life of the belt-drive is critically related on these features, and therefore, amodel which can be used to study the correlations between the initial values and the responses of the belt-drives is a valuable source of information for the development process of the belt-drives. Traditionally, the finite element models of the belt-drives consist of a large number of elements thatmay lead to computational inefficiency. In this research, the beneficial features of the absolute nodal coordinate formulation are utilized in the modeling of the belt-drives in order to fulfill the following requirements for the successful and efficient analysis of the belt-drive systems: the exact modeling of the rigid body inertia during an arbitrary rigid body motion, the consideration of theeffect of the shear deformation, the exact description of the highly nonlinear deformations and a simple and realistic description of the contact. The use of distributed contact forces and high order beam and plate elements based on the absolute nodal coordinate formulation are applied to the modeling of the belt-drives in two- and three-dimensional cases. According to the numerical results, a realistic behavior of the belt-drives can be obtained with a significantly smaller number of elements and degrees of freedom in comparison to the previously published finite element models of belt-drives. The results of theexamples demonstrate the functionality and suitability of the absolute nodal coordinate formulation for the computationally efficient and realistic modeling ofbelt-drives. This study also introduces an approach to avoid the problems related to the use of the continuum mechanics approach in the definition of elastic forces on the absolute nodal coordinate formulation. This approach is applied to a new computationally efficient two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. The proposed beam element uses a linear displacement field neglecting higher-order terms and a reduced number of nodal coordinates, which leads to fewer degrees of freedom in a finite element.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
Radiostereometric analysis (RSA) is a highly accurate method for the measurement of in vivo micromotion of orthopaedic implants. Validation of the RSA method is a prerequisite for performing clinical RSA studies. Only a limited number of studies have utilised the RSA method in the evaluation of migration and inducible micromotion during fracture healing. Volar plate fixation of distal radial fractures has increased in popularity. There is still very little prospective randomised evidence supporting the use of these implants over other treatments. The aim of this study was to investigate the precision, accuracy, and feasibility of using RSA in the evaluation of healing in distal radius fractures treated with a volar fixed-angle plate. A physical phantom model was used to validate the RSA method for simple distal radius fractures. A computer simulation model was then used to validate the RSA method for more complex interfragmentary motion in intra-articular fractures. A separate pre-clinical investigation was performed in order to evaluate the possibility of using novel resorbable markers for RSA. Based on the validation studies, a prospective RSA cohort study of fifteen patients with plated AO type-C distal radius fractures with a 1-year follow-up was performed. RSA was shown to be highly accurate and precise in the measurement of fracture micromotion using both physical and computer simulated models of distal radius fractures. Resorbable RSA markers demonstrated potential for use in RSA. The RSA method was found to have a high clinical precision. The fractures underwent significant translational and rotational migration during the first two weeks after surgery, but not thereafter. Maximal grip caused significant translational and rotational interfragmentary micromotion. This inducible micromotion was detectable up to eighteen weeks, even after the achievement of radiographic union. The application of RSA in the measurement of fracture fragment migration and inducible interfragmentary micromotion in AO type-C distal radius fractures is feasible but technically demanding. RSA may be a unique tool in defining the progress of fracture union.
Resumo:
The thesis work models the squeezing of the tube and computes the fluid motion of a peristaltic pump. The simulations have been conducted by using COMSOL Multiphysics FSI module. The model is setup in axis symmetric with several simulation cases to have a clear understanding of the results. The model captures total displacement of the tube, velocity magnitude, and average pressure fluctuation of the fluid motion. A clear understanding and review of many mathematical and physical concepts are also discussed with their applications in real field. In order to solve the problems and work around the resource constraints, a thorough understanding of mass balance and momentum equations, finite element concepts, arbitrary Lagrangian-Eulerian method, one-way coupling method, two-way coupling method, and COMSOL Multiphysics simulation setup are understood and briefly narrated.