2 resultados para Many-valued logic

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies the properties and usability of operators called t-norms, t-conorms, uninorms, as well as many valued implications and equivalences. Into these operators, weights and a generalized mean are embedded for aggregation, and they are used for comparison tasks and for this reason they are referred to as comparison measures. The thesis illustrates how these operators can be weighted with a differential evolution and aggregated with a generalized mean, and the kinds of measures of comparison that can be achieved from this procedure. New operators suitable for comparison measures are suggested. These operators are combination measures based on the use of t-norms and t-conorms, the generalized 3_-uninorm and pseudo equivalence measures based on S-type implications. The empirical part of this thesis demonstrates how these new comparison measures work in the field of classification, for example, in the classification of medical data. The second application area is from the field of sports medicine and it represents an expert system for defining an athlete's aerobic and anaerobic thresholds. The core of this thesis offers definitions for comparison measures and illustrates that there is no actual difference in the results achieved in comparison tasks, by the use of comparison measures based on distance, versus comparison measures based on many valued logical structures. The approach has been highly practical in this thesis and all usage of the measures has been validated mainly by practical testing. In general, many different types of operators suitable for comparison tasks have been presented in fuzzy logic literature and there has been little or no experimental work with these operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work was to realize a high-speed digital data transfer system for RPC muon chambers in the CMS experiment on CERN’s new LHC accelerator. This large scale system took many years and many stages of prototyping to develop, and required the participation of tens of people. The system interfaces to Frontend Boards (FEB) at the 200,000-channel detector and to the trigger and readout electronics in the control room of the experiment. The distance between these two is about 80 metres and the speed required for the optic links was pushing the limits of available technology when the project was started. Here, as in many other aspects of the design, it was assumed that the features of readily available commercial components would develop in the course of the design work, just as they did. By choosing a high speed it was possible to multiplex the data from some the chambers into the same fibres to reduce the number of links needed. Further reduction was achieved by employing zero suppression and data compression, and a total of only 660 optical links were needed. Another requirement, which conflicted somewhat with choosing the components a late as possible was that the design needed to be radiation tolerant to an ionizing dose of 100 Gy and to a have a moderate tolerance to Single Event Effects (SEEs). This required some radiation test campaigns, and eventually led to ASICs being chosen for some of the critical parts. The system was made to be as reconfigurable as possible. The reconfiguration needs to be done from a distance as the electronics is not accessible except for some short and rare service breaks once the accelerator starts running. Therefore reconfigurable logic is extensively used, and the firmware development for the FPGAs constituted a sizable part of the work. Some special techniques needed to be used there too, to achieve the required radiation tolerance. The system has been demonstrated to work in several laboratory and beam tests, and now we are waiting to see it in action when the LHC will start running in the autumn 2008.