2 resultados para Mammary cancer
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Breast cancer is the most common cancer in women, and its development is intimately related to hormonal factors, but how hormones affect breast physiology and tumorigenesis is not sufficiently known. Pregnancy elicits long-term protection from breast cancer, but during the first ten years after pregnancy, breast cancer risk is increased. In previous studies, there has been conflicting data on the role of human chorionic gonadotropin (HCG) and the functionality of its receptor in extragonadal tissues. The aim of this study was to elucidate the role of chronically elevated HCG in mouse physiology. We have created a transgenic (TG) mouse model that overexpresses HCG. HCG is similar to lutenizing hormone (LH), but is secreted almost solely by the placenta during pregnancy. HCG and LH both bind to the LH receptor (LHR). In the current study, mammary gland tumors were observed in HCG TG mice. We elucidated the role of HCG in mammary gland signalling and the effects of LHR mediated signalling in mouse mammary gland gene expression. We also studied the effects of HCG in human breast epithelial cell cultures. Several endocrine disturbances were observed in HCGβ TG female mice, resulting in precocious puberty, infertility, obesity and pituitary and mammary gland tumors. The histology of the mammary gland tumors of HCGβ TG females resembled those observed in mouse models with activated Wnt/β-catenin signalling pathway. Wnts are involved in stem cell regulation and tumorigenesis, and are hormonally regulated in the mammary gland. We observed activated β-catenin signalling and elevated expression of Wnt5b and Wnt7b in TG tumors and mammary glands. Furthermore, we discovered that HCG directly regulates the expression of Wnt5b and Wnt7b in the mouse mammary gland. Pharmacological treatment with HCG also caused upregulation of several Wnt-pathway target genes in ovariectomized wild type (WT) mice in the presence of physiological concentrations of estradiol and progesterone. In addition, differential expression of several metabolic genes was observed, suggesting that HCG affects adipocyte function or glucose metabolism. When WT mice were transplanted with LHR deficient or wild type WT mammary epithelium, differential expression of several genes affecting the Wnt-signalling pathway was observed in microarray analysis. Diminished expression of several genes associated with LHR function in other tissues, such as the ovary, was observed in mammary glands deficient of epithelial LHR. In cultured human mammary epithelial cells HCG upregulated the expression of WNT5B, WNT7B similar to mouse, suggesting that the observations found are relevant in human physiology. These studies suggest that HCG/LHR signalling affects gene expression in non-gonadal tissues, and that Wnt-signalling is regulated by HCG/LH in human and mouse mammary glands.
Resumo:
Cancerous inhibitor of PP2A (CIP2A) is an oncoprotein expressed in several human cancer types. Previously, CIP2A has been shown to promote proliferation of cancer cells. Mechanistically, CIP2A is known to inhibit activity of a tumor suppressor protein phosphatase 2A (PP2A) towards an oncoprotein MYC, further stabilizing MYC in human cancer. However, the molecular mechanisms how CIP2A expression is induced during cellular transformation are not well known. Also, expression, functional role and clinical relevance of CIP2A in breast cancer had not been studied before. The results of this PhD thesis work demonstrate that CIP2A is highly expressed in human breast cancer, and that high expression of CIP2A in tumors is a poor prognostic factor in a subset of breast cancer patients. CIP2A expression correlates with inactivating mutations of tumor suppressor p53 in human cancer. Notably, we demonstrate that p53 inactivation up-regulates CIP2A expression via increased expression of an oncogenic transcription factor E2F1. Moreover, CIP2A promotes expression of E2F1, and this novel positive feedback loop between E2F1 and CIP2A is demonstrated to regulate sensitivity to both p53-dependent and -independent senescence induction in breast cancer cells. Importantly, in a CIP2A deficient breast cancer mouse model, abrogation of CIP2A attenuates mammary tumor formation and progression with features of E2F1 inhibition and induction of senescence. Furthermore, we demonstrate that CIP2A expression defines the cellular response to a senescence-inducing chemotherapy in breast cancer. Taken together, these results demonstrate that CIP2A is an essential promoter of breast cancer tumor growth by inhibiting senescence. Finally, this study implicates inhibition of CIP2A as a promising therapy target for breast cancer.