5 resultados para Magnetic Circular-dichroism
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis describes work related to the in-depth characterization of the phenolic compounds of silver birch (Betula pendula) inner bark. Phenolic compounds are the most ubiquitous class of plant secondary compounds. The unifying feature of this structurally diverse group is an aromatic ring containing at least one hydroxyl group. Due to the structural diversity, phenolics have various roles in the plant defense against biotic and abiotic stresses. In addition, they can confer several health-promoting properties to humans. Furthermore, the structural diversity of this class of compounds causes challenges for their analysis. The study species in the present work, silver birch, is economically the most important hard wood species in northern Europe. Its inner bark contains a high level of phenolic compounds and it has shown one of the strongest antioxidant activities among 92 Finnish plant materials. The literature review surveys the diversity and organ specific distribution of phenolic compounds in silver birch as well as the proposed ecological functions of phenolic compounds in nature. In addition, the basis for the characterization of phenolics by mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and circular dichroism spectroscopy (CD) are reviewed. The objective of the experimental work was to extract, purify, characterize, and quantify the inner bark phenolic compounds. Overall 36 compounds were characterized by MS and ultraviolet spectroscopy (UV). 24 compounds were isolated and their structures confirmed by NMR and CD spectroscopy. Five novel natural compounds were identified. Special emphasis was placed on the establishment of a method for the characterization of proanthocyanidins (PAs). Hydrophilic interaction liquid chromatography (HILIC) was utilized because of its high resolution power and predictable elution order of oligomeric and polymeric PAs according to an increasing degree of polymerization. The combination of HILIC and high-resolution MS detection allowed the identification of procyanidin (PC) polymers up to the degree of polymerization of 22. In addition, a series of oligomeric and polymeric PC monoxylosides were observed for the first time in nature. Season and genotype influenced the quantities of the main inner bark phenolics, yet qualitative differences were not observed. However, manual wounding of the inner bark induced the production of ellagitannins (ETs) in the wounded tissues, i.e. callus. Since ETs were not detected in the intact inner bark, this finding may reflect the capacity of silver birch to exploit ellagitannins in its defense.
Resumo:
This thesis summarizes studies of a class of white dwarfs (WDs) called DQ WDs. White dwarfs are the remnants of ordinary stars like our Sun that have run out of nuclear fuel. WDs are classified according to the composition of their atmosphere and DQ WDs have an atmosphere made of helium and carbon. The carbon comes in either atomic or molecular form and in some cases the strong spectral absorption features cover the entire optical wavelength region. The research presented here utilizes spectropolarimetry, which is an observational technique that combines spectroscopy and polarization. Separately these allow to study the composition of a target and the inhomogeneous distribution of matter in the target. Put together they form a powerful tool to probe the physical properties in the atmosphere of a star. It is espacially good for detecting magnetic fields. The papers in this thesis describe efforts to do a survey of DQ white dwarfs with spectropolarimetry in order to search for magnetic fields in them. Paper I describes the discovery of a new magnetic cool DQ white dwarf, GJ841B. Initial modeling of molecular features on DQ WDs showed inconsistencies with observations. The first possible solution to this problem was stellar spots on these WDs. To investigate the matter, two DQ WDs were monitored for photometric variability that could arise from the presence of such spots. Paper II summarizes this short campaign and reports the negative results. Paper III reports observations of the rest of the objects in our survey. The paper includes the discovery of polarization from another cool DQ white dwarf, bringing the total of known magnetic cool DQs to three. Unfortunately the model used in this thesis cannot, in its present state, be used to model these objects nor are the observations of high enough spectroscopic resolution to do so.
Resumo:
The aim of this thesis research was to gain a better understanding of the emplacement of rapakivi granite intrusions, as well as the emplacement of gold-bearing hydrothermal fluids in structurally controlled mineralizations. Based on investigations of the magnetic fabric, the internal structures could be analysed and the intrusion mechanisms for rapakivi granite intrusions and respectively different deformation stages within gold-bearing shear and fault zones identified. Aeromagnetic images revealed circular structures within the rapakivi granite batholiths of Wiborg, Vehmaa and Åland. These circular structures represent intrusions that eventually build up these large batholiths. The rapakivi granite intrusions of Vehmaa, Ruotsinpyhtää within the Wiborg batholith and Saltvik intrusions within the Åland batholith all show bimodal magnetic susceptibilities with paramagnetic and ferromagnetic components. The distribution of the bimodality is related to different magma batches of the studied intrusions. The anisotropy of magnetic susceptibility (AMS) reveals internal structures that cannot be studied macroscopically or by microscope. The Ruotsinpyhtää and Vehmaa intrusions represent similar intrusion geometries, with gently to moderately outward dipping magnetic foliations. In the case of Vehmaa, the magnetic lineations are gently plunging and trend in the directions of the slightly elongated intrusion. The magnetic lineations represent magma flow. The shapes of the AMS ellipsoids are also more planar (oblate) in the central part of the intrusion, whereas they become more linear (prolate) near the margin. These AMS results, together with field observations, indicate that the main intrusion mechanism has involved the subsidence of older blocks with successive intrusion of fractionated magma during repeated cauldron subsidence. The Saltvik area within the Åland batholith consists of a number of smaller elliptical intrusions of different rapakivi types forming a multiple intrusive complex. The magnetic fabric shows a general westward dipping of the pyterlite and eastward dipping of the contiguous even-grained rapakivi granite, which indicates a central inflow of magma batches towards the east and west resulting from a laccolitic emplacement of magma batches, while the main mechanism for space creation was derived from subsidence. The magnetic fabric of structurally controlled gold potential shear and fault zones in Jokisivu, Satulinmäki and Koijärvi was investigated in order to describe the internal structures and define the deformation history and emplacement of hydrothermal fluids. A further aim of the research was to combine AMS studies with palaeomagnetic methods to constrain the timing for the shearing event relative to the precipitation of ferromagnetic minerals and gold. All of the studied formations are dominated by monoclinic pyrrhotite. The AMS directions generally follow the tectonic structures within the formations. However, internal variations in the AMS direction as well as the shapes of the AMS ellipsoids are observed within the shear zones. In Jokisivu and Satulinmäki in particular, the magnetic signatures of the shear zone core differ from the margins. Furthermore, the shape of the magnetic fabric in the shear zone core of Jokisivu is dominated by oblate shapes, whereas the margins exhibit prolate shapes. These variations indicate a later effect of the hydrothermal fluids on the general shear event. The palaeo-magnetic results reveal a deflection from the original Svecofennian age geomagnetic direction. These results, coupled with correlations between the orientation of the NRM vectors and the magnetic and rock fabrics, imply that the gold-rich hydrothermal fluids were emplaced pre/syntectonically during the late stages of the Svecofennian orogeny.