3 resultados para MYCN-AMPLIFICATION
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Molecular Characteristics of Neuroblastoma with Special Reference to Novel Prognostic Factors and Diagnostic Applications Department of Medical Biochemistry and Genetics Annales Universitatis Turkuensis, Medica-Odontologica, 2009, Turku, Finland Painosalama Oy, Turku, Finland 2009 Background: Neuroblastoma, which is the most common and extensively studied childhood solid cancer, shows a great clinical and biological heterogeneity. Most of the neuroblastoma patients older than one year have poor prognosis despite intensive therapies. The hallmark of neuroblastoma, biological heterogeneity, has hindered the discovery of prognostic tumour markers. At present, few molecular markers, such as MYCN oncogene status, have been adopted into clinical practice. Aims: The aim of the study was to improve the current prognostic methodology of neuroblastoma, especially by taking cognizance of the biological heterogeneity of neuroblastoma. Furthermore, unravelling novel molecular characteristics which associate with neuroblastoma tumour progression and cell differentiation was an additional objective. Results: A new strictly defined selection of neuroblastoma tumour spots of highest proliferation activity, hotspots, appeared to be representative and reliable in an analysis of MYCN amplification status using a chromogenic in situ hybridization technique (CISH). Based on the hotspot tumour tissue microarray immunohistochemistry and high-resolution oligo-array-based comparative genomic hybridization, which was integrated with gene expression and in silico analysis of existing transcriptomics, a polysialylated neural cell adhesion molecule (NCAM) and poorly characterized amplicon at 12q24.31 were discovered to associate with outcome. In addition, we found that a previously considered new neuroblastoma treatment target, the mutated c-kit receptor, was not mutated in neuroblastoma samples. Conclusions: Our studies indicate polysialylated NCAM and 12q24.31 amplicon to be new molecular markers with important value in prognostic evaluation of neuroblastoma. Moreover, the presented hotspot tumour tissue microarray method together with the CISH technique of the MYCN oncogene copy number is directly applicable to clinical use. Key words: neuroblastoma, polysialic acid, neural cell adhesion molecule, MYCN, c-kit, chromogenic in situ hybridization, hotspot
Resumo:
ErbB receptors (EGFR, ErbB2, ErbB3 and ErbB4) are growth factor receptors that regulate signals of cell differentiation, proliferation, migration and survival. Inappropriate activation of these receptors is associated with the development and severity of many cancers and has prognostic and predictive value in cancer therapy. Drugs, such as therapeutic antibodies, targeted against EGFR and ErbB2, are currently used in therapy of breast, colorectal and head and neck cancers. The role of ErbB4 in tumorigenesis has remained relatively poorly understood. Alternative splicing produces four different isoforms of one ErbB4 gene. These isoforms (JM-a, JM-b, CYT-1 and CYT-2) are functionally dissimilar and proposed to have different roles in carcinogenesis. The juxtamembrane form JM-a undergoes regulated intramembrane proteolysis producing a soluble receptor ectodomain and an intracellular domain that translocates into the nucleus and regulates transcription. Nuclear signaling via JM-a isoform stimulates cancer cell proliferation. This study aimed to develop antibodies targeting the proposed oncogenic ErbB4 JM-a isoform that show potential in inhibiting ErbB4 dependent tumorigenesis. Also, the clinical relevance of ErbB4 shedding in cancer was studied. The currently used monoclonal antibody trastuzumab, targeting ErbB2, has shown efficacy in breast cancer therapy. In this study novel tissues with ErbB2 amplification and trastuzumab sensitivity were analyzed. The results of this study indicated that a subpopulation of breast cancer patients demonstrate increased shedding and cleavage of ErbB4. A JM-a isoform-specific antibody that inhibited ErbB4 shedding and consequent activation of ErbB4 had anti-tumor activity both in vitro and in vivo. Thus, ErbB4 shedding associates with tumor growth and specific targeting of the cleavable JM-a isoform could be considered as a strategy for developing novel ErbB-based cancer drugs. In addition, it was demonstrated that ErbB2 amplification is common in intestinal type gastric cancers with poor clinical outcome. Trastuzumab inhibited growth of gastric and breast cancer cells with equal efficacy. Thus, ErbB2 may be a useful target in gastric cancer.
Resumo:
Our understanding of the pathogenesis of organ‐specific autoinflammation has been restricted by limited access to the target organs. Peripheral blood, however, as a preferred transportation route for immune cells, provides a window to assess the entire immune system throughout the body. Transcriptional profiling with RNA stabilizing blood collection tubes reflects in vivo expression profiles at the time the blood is drawn, allowing detection of the disease activity in different samples or within the same sample over time. The main objective of this Ph.D. study was to apply gene‐expression microarrays in the characterization of peripheral blood transcriptional profiles in patients with autoimmune diseases. To achieve this goal a custom cDNA microarray targeted for gene‐expression profiling of human immune system was designed and produced. Sample collection and preparation was then optimized to allow gene‐expression profiling from whole‐blood samples. To overcome challenges resulting from minute amounts of sample material, RNA amplification was successfully applied to study pregnancy related immunosuppression in patients with multiple sclerosis (MS). Furthermore, similar sample preparation was applied to characterize longitudinal genome‐wide expression profiles in children with type 1 diabetes (T1D) associated autoantibodies and eventually clinical T1D. Blood transcriptome analyses, using both the ImmunoChip cDNA microarray with targeted probe selection and genome‐wide Affymetrix U133 Plus 2.0 oligonucleotide array, enabled monitoring of autoimmune activity. Novel disease related genes and general autoimmune signatures were identified. Notably, down‐regulation of the HLA class Ib molecules in peripheral blood was associated with disease activity in both MS and T1D. Taken together, these studies demonstrate the potential of peripheral blood transcriptional profiling in biomedical research and diagnostics. Imbalances in peripheral blood transcriptional activity may reveal dynamic changes that are relevant for the disease but might be completely missed in conventional cross‐sectional studies.