46 resultados para MATHEMATICAL SIMULATIONS

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preference relations, and their modeling, have played a crucial role in both social sciences and applied mathematics. A special category of preference relations is represented by cardinal preference relations, which are nothing other than relations which can also take into account the degree of relation. Preference relations play a pivotal role in most of multi criteria decision making methods and in the operational research. This thesis aims at showing some recent advances in their methodology. Actually, there are a number of open issues in this field and the contributions presented in this thesis can be grouped accordingly. The first issue regards the estimation of a weight vector given a preference relation. A new and efficient algorithm for estimating the priority vector of a reciprocal relation, i.e. a special type of preference relation, is going to be presented. The same section contains the proof that twenty methods already proposed in literature lead to unsatisfactory results as they employ a conflicting constraint in their optimization model. The second area of interest concerns consistency evaluation and it is possibly the kernel of the thesis. This thesis contains the proofs that some indices are equivalent and that therefore, some seemingly different formulae, end up leading to the very same result. Moreover, some numerical simulations are presented. The section ends with some consideration of a new method for fairly evaluating consistency. The third matter regards incomplete relations and how to estimate missing comparisons. This section reports a numerical study of the methods already proposed in literature and analyzes their behavior in different situations. The fourth, and last, topic, proposes a way to deal with group decision making by means of connecting preference relations with social network analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Lannoituksen pitkäaikaiset kenttäkokeet: kolmen matemaattisen mallin vertailu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langattoman laajakaistaisen tietoliikennetekniikan kehittyminen on herättänyt kiinnostuksen sen ammattimaiseen hyödyntämiseen yleisen turvallisuuden ja kriisinhallinnan tarpeisiin. Hätätilanteissa usein olemassa olevat kiinteät tietoliikennejärjestelmät eivät ole ollenkaan käytettävissä tai niiden tarjoama kapasiteetti ei ole riittävä. Tästä syystä on noussut esiin tarve nopeasti toimintakuntoon saatettaville ja itsenäisille langattomille laajakaistaisille järjestelmille. Tässä diplomityössä on tarkoitus tutkia langattomia ad hoc monihyppy -verkkoja yleisen turvallisuuden tarpeiden pohjalta ja toteuttaa testialusta, jolla voidaan demonstroida sekä tutkia tällaisen järjestelmän toimintaa käytännössä. Työssä tutkitaan pisteestä pisteeseen sekä erityisesti pisteestä moneen pisteeseen suoritettavaa tietoliikennettä. Mittausten kohteena on testialustan tiedonsiirtonopeus, lähetysteho ja vastaanottimen herkkyys. Näitä tuloksia käytetään simulaattorin parametreina, jotta simulaattorin tulokset olisivat mahdollisimman aidot ja yhdenmukaiset testialustan kanssa. Sen jälkeen valitaan valikoima yleisen turvallisuuden vaatimusten mukaisia ohjelmia ja sovellusmalleja, joiden suorituskyky mitataan erilaisten reititysmenetelmien alaisena sekä testialustalla että simulaattorilla. Tuloksia arvioidaan ja vertaillaan. Multicast monihyppy -video päätettiin sovelluksista valita tutkimusten pääkohteeksi ja sitä sekä sen ominaisuuksia on tarkoitus myös oikeissa kenttäkokeissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli tuottaa rakenteellisen jouston huomioiva monikappaledynmiikan simulointiohjelma Matlab-ympäristöön. Rakenteellinen jousto huomioitiin kelluvan koordinaatiston menetelmällä ja joustavuutta kuvaavat muodot ratkaistiin elementtimenetelmällä. Tehdyn ohjelman avulla voidaan koostaa joustavista kappaleista koostuvia avaruusmekanismeja ja tutkia niiden dynaamista käyttäytymistä. Simulointitulosta verrattiin kaupallisen ohjelmiston tuottamaan tulokseen. Työssä havaittiin, että kelluvan koordinaatiston menetelmä on käyttökelpoinen reaaliaikaiseen simulointiin. Työssä toteutetun ohjelman tulokset vastasivat kaupallisen simulointiohjelman tuloksia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli tutkia tislauskolonnin dynamiikkaa ja dynaamista mallintamista simulointien avulla. Dynaamisen simulointimallin avulla selvitettiin pentaanin erotuskolonnin toimintaa poikkeus- ja häiriötilanteissa. Lisäksi pyrittiin arvioimaan työssä käytettyjen simulointiohjelmistojen soveltuvuutta tislauksen dynaamiseen simulointiin. Työn kirjallisuusosassa käsiteltiin tislauskolonnindynamiikan mallintamista matemaattisten mallien avulla sekä tislauskolonnimallin rakentamista simulointiohjelmistoon. Kirjallisuusosassa esiteltiin myös tislauskolonnin häiriötilanteita ja niiden aiheuttamia varopurkaustapauksia. Tämän lisäksi kirjallisuusosassa käytiin läpi tislauskolonnin varoventtiilien mitoittamisen perusteita. Työn soveltavassa osassa muodostettiin tislauskolonnille dynaaminen simulointimalli Aspen HYSYS Dynamics ja PROSimulator-simulointiohjelmistolla. Mallien avulla tarkasteltiin erilaisten häiriöiden ja poikkeustilanteiden vaikutusta kolonnin käyttäytymiseen ja varopurkaus-tapauksiin. Työssä arvioitiin myös ohjelmistojen soveltuvuutta tislauksen dynaamiseen simulointiin. Työssä saatujen tulosten perusteella voidaan todeta, että dynaamisen simuloinnin avulla saadaan hyödyllistä tietoa tislauskolonnin toiminnasta häiriö- ja poikkeustilanteissa. Dynaamisen simuloinnin onnistuminen ja luotettavien tulosten saaminen edellyttää kuitenkin tarkasteltavan prosessin tuntemista ja ohjelmiston käytön hallintaa. Työssä käytetyn Aspen HYSYS Dynamics simulointiohjelmiston käytettävyydessä havaittiin puutteita ja ohjelmisto vaatii vielä kehitystyötä. Työssä käytetty PROSimulator-simulointiohjelmisto soveltui pienistä puutteista huolimatta hyvin tislauskolonnin häiriötilanteiden tutkimiseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.