25 resultados para Méthode de Monte Carlo

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkielman päätavoitteena oli selvittää, miten Monte Carlo –simulointi soveltuu strategisten reaalioptioiden arvonmääritykseen. Tutkielman teoriaosuudessa käytiin läpi reaalioptioteoriaa ja Monte Carlo –simulointimenetelmää toiminta-analyyttisella tutkimusotteella. Tuloksena todettiin, että simulointimenetelmää on reaalioptioiden yhteydessä yleensä käytetty, kun muu menetelmä ei ole ollut mahdollinen. Tutkielman pääpaino on tapaustutkimukseen pohjautuvassa empiriaosuudessa, jossa rakennettiin päätöksentekometodologista tutkimusotetta seuraten simulointimalli, jolla tutkittiin Voest Alpine Stahl Ag:n vaihtoehtoisten hinnoittelustrategioiden taloudellista vaikutusta. Mallin rakentaminen perustui yrityksen tilinpäätösaineistoon. Havaittiin, ettei yritys ole valitsemansa strategian vuoksi juurikaan menettänyt tuottoja, mutta toisaalta pelkkä tilinpäätösaineisto ei riitä kovin luotettavaan tarkasteluun. Vuosikertomusten antaman tiedon pohjalta analysoitiin lisäksi yrityksen toiminnassa havaittuja reaalioptioita. Monte Carlo –simulointimenetelmä sopii reaalioptioiden arvonmääritykseen, mutta kriittisiä tekijöitä ovat mallin rakentaminen ja lähtötietojen oikeellisuus. Numeerisen mallin rinnalla on siksi aiheellista suorittaa myös laadullista reaalioptioanalyysia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo -reaktorifysiikkakoodit nykyisin käytettävissä olevilla laskentatehoilla tarjoavat mielenkiintoisen tavan reaktorifysiikan ongelmien ratkaisuun. Neljännen sukupolven ydinreaktoreissa käytettävät uudet rakenteet ja materiaalit ovat haasteellisia nykyisiin reaktoreihin suunnitelluille laskentaohjelmille. Tässä työssä Monte Carlo -reaktorifysiikkakoodi ja CFD-koodi yhdistetään kytkettyyn laskentaan kuulakekoreaktorissa, joka on yksi korkealämpötilareaktorityyppi. Työssä käytetty lähestymistapa on uutta maailmankin mittapuussa ajateltuna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this master thesis was to perform simulations that involve use of random number while testing hypotheses especially on two samples populations being compared weather by their means, variances or Sharpe ratios. Specifically, we simulated some well known distributions by Matlab and check out the accuracy of an hypothesis testing. Furthermore, we went deeper and check what could happen once the bootstrapping method as described by Effrons is applied on the simulated data. In addition to that, one well known RobustSharpe hypothesis testing stated in the paper of Ledoit and Wolf was applied to measure the statistical significance performance between two investment founds basing on testing weather there is a statistically significant difference between their Sharpe Ratios or not. We collected many literatures about our topic and perform by Matlab many simulated random numbers as possible to put out our purpose; As results we come out with a good understanding that testing are not always accurate; for instance while testing weather two normal distributed random vectors come from the same normal distribution. The Jacque-Berra test for normality showed that for the normal random vector r1 and r2, only 94,7% and 95,7% respectively are coming from normal distribution in contrast 5,3% and 4,3% failed to shown the truth already known; but when we introduce the bootstrapping methods by Effrons while estimating pvalues where the hypothesis decision is based, the accuracy of the test was 100% successful. From the above results the reports showed that bootstrapping methods while testing or estimating some statistics should always considered because at most cases the outcome are accurate and errors are minimized in the computation. Also the RobustSharpe test which is known to use one of the bootstrapping methods, studentised one, were applied first on different simulated data including distribution of many kind and different shape secondly, on real data, Hedge and Mutual funds. The test performed quite well to agree with the existence of statistical significance difference between their Sharpe ratios as described in the paper of Ledoit andWolf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 Main goal of this thesis was to implement a localization system which uses sonars and WLAN intensity maps to localize an indoor mobile robot. A probabilistic localization method, Monte Carlo Localization is used in localization. Also the theory behind probabilistic localization is explained. Two main problems in mobile robotics, path tracking and global localization, are solved in this thesis. Implemented system can achieve acceptable performance in path tracking. Global localization using WLAN received signal strength information is shown to provide good results, which can be used to localize the robot accurately, but also some bad results, which are no use when trying to localize the robot to the correct place. Main goal of solving ambiguity in office like environment is achieved in many test cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis was focussed on statistical analysis methods and proposes the use of Bayesian inference to extract information contained in experimental data by estimating Ebola model parameters. The model is a system of differential equations expressing the behavior and dynamics of Ebola. Two sets of data (onset and death data) were both used to estimate parameters, which has not been done by previous researchers in (Chowell, 2004). To be able to use both data, a new version of the model has been built. Model parameters have been estimated and then used to calculate the basic reproduction number and to study the disease-free equilibrium. Estimates of the parameters were useful to determine how well the model fits the data and how good estimates were, in terms of the information they provided about the possible relationship between variables. The solution showed that Ebola model fits the observed onset data at 98.95% and the observed death data at 93.6%. Since Bayesian inference can not be performed analytically, the Markov chain Monte Carlo approach has been used to generate samples from the posterior distribution over parameters. Samples have been used to check the accuracy of the model and other characteristics of the target posteriors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pitkäaikaisten rakennusurakoiden tarjouslaskennassa on ennakoitava hintojen muutoksia useiden vuosien päähän, kun tarjoukset on tehtävä kiinteillä hinnoilla. Kustannusten ennakointi ja hintariskienhallinta on kriittinen tekijä rakennusalan yrityksen kilpailukyvylle. Tämän tutkielman tavoitteena on kehittää YIT Rakennus Oy:n Infrapalveluille toimintamalli ja työkalu, joiden avulla hintariskejä voidaan hallita tarjouslaskennassa sekä hankintatoimessa. Ratkaisuksi kehitettiin kustannusten ennakointi -malli, jossa panosryhmien hintojen kehitystä ennustetaan asiantuntijaryhmissä säännöllisesti. Kustannusten ennakointi -mallin käyttöönotto vaatii ennustettavien panosryhmien määrittelyä. Lisäksi on nimettävä asiantuntijaryhmä sekä valittava aikajänne, jolle ennuste tehdään. Ennusteisiin sisältyvä epävarmuus saadaan esiin Monte Carlo simulaatiolla, ja urakan hintariskiä voidaan siten arvioida todennäköisyysjakaumien ja herkkyysanalyysin avulla. Valmiita ennusteita hyödynnetään tarjouslaskennassa sekä hankintatoimessa taktiikoiden ja strategioiden valinnassa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tämän työn tarkoituksena oli tarkastella kohdeorganisaation hankintaprosessin suorituskykyä. Tutkimuksen päämääränä oli tuottaa yritykselle sellaista tietoa ja arviointikriteerejä, joiden avulla yritys voi kehittää valmiuksiaan oman suorituskyvyn tehokkaampaan arviointiin tulevaisuudessa. Tutkielma tehtiin Skanska Oy:n osto-osastolle Helsinkiin. Tutkimuksen kohteeksi valittiin kausisopimusten hankintaprosessi epäsuorissa hankinnoissa, kotimaisilla markkinoilla. Keskitetyn kausisopimusten hankintaprosessin tarkoituksena on tuottaa yritykselle kilpailukykyisiä sopimuksia sekä saavuttaa prosessin parempi hallinta ja läpinäkyvyys. Tietoa tutkimuksen kohteena olevasta prosessista kerättiin haastatteluilla ja keskustelutuokioilla sekä yrityksen dokumenteista. Aineiston keräämisen kautta pyrittiin saamaan syvempi kuva prosessin toiminnasta, sen ongelmakohdista sekä niiden syistä ja seurauksista. Toisen tarkastelunäkökulman prosessin arvioinnille tarjosi läpimenoajan mittaaminen. Saatua aineistoa luokiteltiin vika- ja vaikutusanalyysiin pohjautuvalla mallilla sekä Monte Carlo – simulaatiomenetelmään perustuvalla ohjelmalla. Työn tuloksena esitetään tutkimuksen kohteena olevalle prosessille sopivia kehitystoimenpiteitä sekä suositeltavia prosessin mittaamisalueita.