2 resultados para Ltp
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This paper describes the cost-benefit analysis of digital long-term preservation (LTP) that was carried out in the context of the Finnish National Digital Library Project (NDL) in 2010. The analysis was based on the assumption that as many as 200 archives, libraries, and museums will share an LTP system. The term ‘system’ shall be understood as encompassing not only information technology, but also human resources, organizational structures, policies and funding mechanisms. The cost analysis shows that an LTP system will incur, over the first 12 years, cumulative costs of €42 million, i.e. an average of €3.5 million per annum. Human resources and investments in information technology are the major cost factors. After the initial stages, the analysis predicts annual costs of circa €4 million. The analysis compared scenarios with and without a shared LTP system. The results indicate that a shared system will have remarkable benefits. At the development and implementation stages, a shared system shows an advantage of €30 million against the alternative scenario consisting of five independent LTP solutions. During the later stages, the advantage is estimated at €10 million per annum. The cumulative cost benefit over the first 12 years would amount to circa €100 million.
Resumo:
Lipid movement in cells occurs by a variety of methods. Lipids diffuse freely along the lateral plane of a membrane and can translocate between the lipid leaflets, either spontaneously or with the help of enzymes. Lipid translocation between the different cellular compartments predominantly takes place through vesicular transport. Specialized lipid transport proteins (LTPs) have also emerged as important players in lipid movement, as well as other cellular processes. In this thesis we have studied the glycolipid transport protein (GLTP), a protein that transports glycosphingolipids (GSLs). While the in vitro properties of GLTP have been well characterized, its cell biological role remains elusive. By altering GSL and GLTP levels in cells, we have extracted clues towards the protein's function. Based on the results presented in this thesis and in previous works, we hypothesize that GLTP is involved in the GSL homeostasis in cells. GLTP most likely functions as a transporter or sensor of newly synthesized glucosylceramide (GlcCer), at or near the site of GlcCer synthesis. GLTP also seems to be involved in the synthesis of globotriacylceramide, perhaps in a manner that is similar to that of the fourphosphate adaptor protein 2, another GlcCer-transporting LTP. Additionally, we have developed and studied a novel method of introducing ceramides to cells, using a solvent-free approach. Ceramides are important lipids that are implicated in several cellular functions. Their role as proapoptotic molecules is particularly evident. Ceramides form stable bilayer structures when complexed with cholesterol phosphocholine (CholPC), a large-headgroup sterol. By adding ceramide/CholPC complexes to the growth medium, various chain length ceramides were successfully delivered to cells in culture. The uptake rate was dependent on the chain length of the ceramide, where shorter lipids were internalized more quickly. The rate of uptake also determined how the cells metabolised the ceramides. Faster uptake favored conversion of ceramide to GlcCer, whereas slower delivery resulted mainly in breakdown of the lipid.