2 resultados para Low-nitrogen Diet

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maternal obesity has been shown to increase the risk for adverse reproductive health outcomes such as gestational diabetes, hypertension, and preeclampsia. Moreover, several studies have indicated that overnutrition and maternal obesity adversely program the development of offspring by predisposing them to obesity and other chronic diseases later in life. The exact molecular mechanisms leading to developmental programming are not known, but it has recently been suggested that obesity-related low-grade inflammation, gut microbiota and epigenetic gene regulation (in particularly DNA methylation) participate in the developmental programming phenomenon. The aim of this thesis was to evaluate the effect of diet, dietary counseling and probiotic intervention during pregnancy in endorsing favorable developmental programming. The study population consisted of 256 mother-child pairs participating in a prospective, double-blinded dietary counselling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) study. Further overweight women were recruited from maternal welfare clinics in the area of Southwest Finland and from the prenatal outpatient clinic at Turku University Hospital. Dietary counseling was aimed to modify women’s dietary intake to comply with the recommended intake for pregnant women. Specifically, counseling aimed to affect the type of fat consumed and to increase the amount of fiber in the women’s diets. Leptin concentration was used as a marker for obesity-related low-grade inflammation, antioxidant vitamin status as an efficiency marker for dietary counselling and epigenetic DNA methylation of obesity related genes as a marker for probiotics influence. Results revealed that dietary intake may modify obesity-associated low-grade inflammation as measured by serum leptin concentration. Specifically, dietary fiber intake may lower leptin concentration in women, whereas the intakes of saturated fatty acids and sucrose have an opposite effect. Neither dietary counselling nor probiotic intervention modified leptin concentration in women, but probiotics tended to increase children’s leptin concentration. Dietary counseling was an efficient tool for improving antioxidant vitamin intake in women, which was reflected in the breast milk vitamin concentration. Probiotic intervention affected DNA methylation of dozens of obesity and weight gain related genes both in women and their children. Altogether these results indicate that dietary components, dietary counseling and probiotic supplementation during pregnancy may modify the intrauterine environment towards favorable developmental programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 1diabetes (T1D) is an autoimmune disease, which is influenced by a variety of environmental factors including diet and microbes. These factors affect the homeostasis and the immune system of the gut. This thesis explored the altered regulation of the immune system and the development of diabetes in non-obese diabetic (NOD) mice. Inflammation in the entire intestine of diabetes-prone NOD mice was studied using a novel ex-vivo imaging system of reactive oxygen and nitrogen species (RONS), in relation to two feeding regimens. In parallel, gut barrier integrity and intestinal T-cell activation were assessed. Extra-intestinal manifestations of inflammation and decreased barrier integrity were sought for by studying peritoneal leukocytes. In addition, the role of pectin and xylan as dietary factors involved in diabetes development in NOD mice was explored. NOD mice showed expression of RONS especially in the distal small intestine, which coincided with T-cell activation and increased permeability to macromolecules. The introduction of a casein hydrolysate (hydrolysed milk protein) diet reduced these phenomena, altered the gut microbiota and reduced the incidence of T1D. Extra-intestinally, macrophages appeared in large numbers in the peritoneum of NOD mice after weaning. Peritoneal macrophages (PM) expressed high levels of interleukin-1 receptor associated kinase M (IRAK-M), which was indicative of exposure to ligands of toll-like receptor 4 (TLR-4) such as bacterial lipopolysaccharide (LPS). Intraperitoneal LPS injections activated T cells in the pancreatic lymph nodes (PaLN) and thus, therefore potentially could activate islet-specific T cells. Addition of pectin and xylan to an otherwise diabetes-retarding semisynthetic diet affected microbial colonization of newly-weaned NOD mice, disturbed gut homeostasis and promoted diabetes development. These results help us to understand how diet and microbiota impact the regulation of the gut immune system in a way that might promote T1D in NOD mice.