13 resultados para Low organic load
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tämän työn tarkoituksena oli tutkia lämpötilan pH:n ja vetyperoksidin vaikutusta kuorimoveden haihdutuskonsentraatin märkähapetuksessa. Kirjallisuusosassa esitellään massan ja paperin valmistusta sekä kuorintaprosessi. Lisäksi tarkastellaan kuoren kemiallista koostumusta, jäteveden ja prosessiveden käsittelymenetelmiä sekä märkähapetuksen periaatteita. Kokeellinen osa käsittää erään suomalaisen paperitehtaan kuorimoveden haihdutuskonsentraatin märkähapetuskokeet. Hapetuskokeet tehtiin useammassa eri lämpötilassa, pH:ssa ja vetyperoksidikonsentraatiossa. Em. muuttujien vaikutusta tutkittiin kemialliseen hapenkulutukseen (COD), biologiseen hapenkulutukseen (BOD), välittömästi saatavana olevan biologiseen hapenkulutukseen (IABOD), orgaaniseen kokonaishiileen (TOC) ja tanniini/ligniini pitoisuuteen. Koetulokset osoittivat, että korkeimmat COD- ja TOC-reduktiot saavutettiin H2O2-katalysoidulla märkähapetuksella jäteveden alkuperäisessä pH:ssa (60 % reduktio COD:lla ja 45 % reduktio TOC:lla lämpötilassa 170 °C ja 0.2 g H2O2/g COD). Toisaalta, parhaat tulokset biohajoavuuden paranemisen suhteen saavutettiin emäksisissä olosuhteissa, jossa 170 °C:ssa saavutettiin BOD/COD-arvo 76 %. Emäksisissä olosuhteissa saavutettiin lähes täydellinen tanniinin reduktio lämpötila-alueella 130-170 °C, mutta näissä lämpötiloissa orgaanisen kuorman alenemista ei havaittu.
Resumo:
Työn tarkoituksena oli tutkia lämpötilan, paineen, pH:n ja katalyytin vaikutusta paperitehtaan TMP-konsentroidun prosessiveden märkähapetuksessa. Teoriaosio sisältää katsauksen sellu- ja paperiteollisuuteen, jätevesien käsittelyyn, nanosuodatuksen ja märkähapetusprosessin toimintaperiaatteet ja sovellukset hybriditeknologialle nanosuodatus-märkähapetuksessa. Empiirinen osa koostuu märkähapetuskokeista eri lämpötiloissa, paineissa, pH:ssa ja eri katalyyseillä. Työssä tutkittiin näiden vaikutusta kemialliseen hapenkulutukseen (COD), Biologiseen hapenkulutukseen (BOD), Välittömästi saatavana olevan biologisen hapenkulutukseen (IABOD), ligniiniin, täysin orgaanisen hiileen (TOC) ja rasvaliukoisten uuteaineiden (LWEs) pitoisuuteen. Tuloksina kokeellisesta työstä saatiin korkeimmat COD:n alenemat ja BOD/COD (biohajoavuus) suurimmilla lämpötilaolosuhteilla (COD:n alenema 70 % ja BOD/COD 97 % 200 °C:ssa ja hapen 10 bar osapaineella). Tutkimuksessa, jossa selvitettiin hapen osapaineen vaikutusta saatiin tuloksena, että hapen osapaineen kasvu parantaa orgaanisen kuormituksen poistoa: COD poisto oli olosuhteilla130°C, 5bar 5 %, olosuhteilla 130 °C, 15bar 15 %, olosuhteilla 170 °C, 5bar 20 % ja olosuhteilla 170 °C, 15bar 50 %. Lähes täydellinen LWEs –poisto saavutettiin 150 °C ja 10bar olosuhteilla, vaikka tässä lämpötilassa ei saavutettu korkeata orgaanisen kuormituksen poistoa. Emäksinen pH vaikutti suosivan hapettavia reaktioita, koska korkein COD:n poisto saavutettiin näissä olosuhteilla; kuitenkin alkalisen väliaineen tehokkuudelle löydettiin tärkeä lämpötilariippuvuus.
Resumo:
Tämä diplomityö tehtiin Vihdin Vesihuoltolaitoksen Nummelan jäteveden puhdistamolle. Työssä tutkittiin typenpoistoa kunnallisista jätevesistä membraanibioreaktorin (MBR) avulla. MBR:ssä yhdistyvät perinteinen aktiivilieteprosessi ja kalvosuodatus. Työn tavoite oli päästä yli 95 % typenpoistoon. Aluksi typenpoisto oli yli 80 %, kun pilot-mittakaavan MBR-laitosta operoitiin perinteisen prosessin parametrein. Typenpoistoa onnistuttiin tehostamaan nostamalla nitraattipitoisen palautuslietteen kierrätystä prosessin alkupäähän (1600 L/h) ja lisäämällä aktiivista biomassaa reaktorissa. Yli 90 % typenpoisto edellytti myös pidempää viipymäaikaa (noin kaksinkertainen perinteiseen prosessiin verrattuna). Tutkimuksessa päästiin parhaimmillaan jopa 95 % typenpoistumaan operoimalla laitteistoa pienellä typpikuormalla (0,1 kg/vrk) ja alhaisemmalla lietepitoisuudella (10 g/L). Typpikuorman noustessa (0,3 kg/vrk) typenpoistoteho laski. Tätä onnistuttiin parantamaan (yli 90 %) nostamalla biomassan määrää reaktorissa (15 g/L). Hyvän typenpoiston saavuttaminen edellytti myös suurempaa metanolin ja hapen syöttöä.
Resumo:
The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
This study compares different rotor structures of permanent magnet motors with fractional slot windings. The surface mounted magnet and the embedded magnet rotor structures are studied. This thesis analyses the characteristics of a concentrated two-layer winding, each coil of which is wound around one tooth and which has a number of slots per pole and per phase less than one (q < 1). Compared to the integer slot winding, the fractional winding (q < 1) has shorter end windings and this, thereby, makes space as well as manufacturing cost saving possible. Several possible ways of winding a fractional slot machine with slots per pole and per phase lessthan one are examined. The winding factor and the winding harmonic components are calculated. The benefits attainable from a machine with concentrated windingsare considered. Rotor structures with surface magnets, radially embedded magnets and embedded magnets in V-position are discussed. The finite element method isused to solve the main values of the motors. The waveform of the induced electro motive force, the no-load and rated load torque ripple as well as the dynamic behavior of the current driven and voltage driven motor are solved. The results obtained from different finite element analyses are given. A simple analytic method to calculate fractional slot machines is introduced and the values are compared to the values obtained with the finite element analysis. Several different fractional slot machines are first designed by using the simple analytical methodand then computed by using the finite element method. All the motors are of thesame 225-frame size, and have an approximately same amount of magnet material, a same rated torque demand and a 400 - 420 rpm speed. An analysis of the computation results gives new information on the character of fractional slot machines.A fractional slot prototype machine with number 0.4 for the slots per pole and per phase, 45 kW output power and 420 rpm speed is constructed to verify the calculations. The measurement and the finite element method results are found to beequal.
Resumo:
Työn tarkoituksena oli analysoida polttoainesauvojen käyttäytymistä Loviisan ydinvoimalaitoksen tehonsäätöajossa. Sähkömarkkinoiden vapautuminen Pohjoismaissa sekä tämän seurauksena vaihteleva sähkön markkinahinta ovat ajaneet sähkötuottajat tilanteeseen, jossa tuotanto aiempaa enemmän mukautuu markkinatilanteeseen. Näin ollen myös Loviisan ydinvoimalaitoksen osallistuminen sähkön tuotannon säätelyyn saattaa tulevaisuudessa olla ajankohtaista. Ennen kuin reaktorin tehonsäätöajoa voidaan alkaa toteuttaa, tulee varmistua siitä, että polttoainesauvassa tehonsäätöjen seurauksena tapahtuvat muutokset eivät aiheuta epäsuotuisia käyttäytymisilmiöitä. Työssä tarkastellaan kahden Loviisan ydinvoimalaitoksen polttoainetoimittajan, British Nuclear Fuels plc:n ja venäläisen TVEL:n ensinippujen polttoainesauvan käyttäytymistä tehonsäätötapauksissa. Työssä tarkastellut tehonsäätötapaukset on pyritty valitsemaan niin, että ne kuvaisivat tulevaisuudessa mahdollisesti toteutettavia tehonsäätöjä. Laskentatapauksien sauvatehohistoriat on generoitu HEXBU-3D sydänsimulaattoriohjelmalla lasketun nelivuotisen perustehohistorian pohjalta lisäämällä säätösauvan aiheuttama reaktoritehon muutos, säätösauvan viereisen polttoainenipun aksiaalitehon muutos sekä säätösauvan rakenteen aiheuttama paikallinen tehopiikki säätösauvan vieressä. Työssä tarkastellaan tehonsäätöjen toteuttamista eri tehotasoille ja vaihtelevilla määrillä tehonsäätösyklejä. Työssä käsitellyt laskentatapaukset on jaoteltu reaktorin ajotavan mukaan seuraavasti: peruskuorma-ajo, viikonloppusäätö ja päiväsäätö. Laskenta suoritettiin ydinpolttoaineen käyttäytymistä kuvaavaa ENIGMA-B 7.3.0 ohjelmaa apuna käyttäen. Laskelmien tulokset osoittavat, että molempien polttoainetoimittajien ensinippujen sauvat kestävät reaktorin tehonsäätöajoa rajoituksetta tarkastelluissa laskentatapauksissa. ENIGMA-ohjelman sisältämät mallit, jotka ennustavat polttoainesauvan suojakuoren vaurioitumistodennäköisyyden jännityskorroosion tai väsymismurtuman kautta, eivät näytä mitään merkkejä vaurioitumisesta. BNFL:n polttoainesauva saavuttaa kuitenkin suurempia väsymismurtumatodennäköisyyden arvoja. Tämä johtuu siitä, että polttoainepelletin ja suojakuoren välinen mekaaninen vuorovaikutus syntyy BNFL:n sauvassa aikaisemmin, joka taas johtaa suurempaan määrään sauvaa rasittavia muodonmuutoksia tehonnostotilanteissa. TVEL:n Zr1%Nb -materiaalista valmistetun suojakuoren käyttäytymistä ei voida kuitenkaan suoraan näiden laskujen perusteella arvioida, sillä ENIGMA-ohjelman mallit perustuvat Zircaloy-suojakuorimateriaaleilla suoritettuihin kokeisiin.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.
Resumo:
Eutrophication caused by anthropogenic nutrient pollution has become one of the most severe threats to water bodies. Nutrients enter water bodies from atmospheric precipitation, industrial and domestic wastewaters and surface runoff from agricultural and forest areas. As point pollution has been significantly reduced in developed countries in recent decades, agricultural non-point sources have been increasingly identified as the largest source of nutrient loading in water bodies. In this study, Lake Säkylän Pyhäjärvi and its catchment are studied as an example of a long-term, voluntary-based, co-operative model of lake and catchment management. Lake Pyhäjärvi is located in the centre of an intensive agricultural area in southwestern Finland. More than 20 professional fishermen operate in the lake area, and the lake is used as a drinking water source and for various recreational activities. Lake Pyhäjärvi is a good example of a large and shallow lake that suffers from eutrophication and is subject to measures to improve this undesired state under changing conditions. Climate change is one of the most important challenges faced by Lake Pyhäjärvi and other water bodies. The results show that climatic variation affects the amounts of runoff and nutrient loading and their timing during the year. The findings from the study area concerning warm winters and their influences on nutrient loading are in accordance with the IPCC scenarios of future climate change. In addition to nutrient reduction measures, the restoration of food chains (biomanipulation) is a key method in water quality management. The food-web structure in Lake Pyhäjärvi has, however, become disturbed due to mild winters, short ice cover and low fish catch. Ice cover that enables winter seining is extremely important to the water quality and ecosystem of Lake Pyhäjärvi, as the vendace stock is one of the key factors affecting the food web and the state of the lake. New methods for the reduction of nutrient loading and the treatment of runoff waters from agriculture, such as sand filters, were tested in field conditions. The results confirm that the filter technique is an applicable method for nutrient reduction, but further development is needed. The ability of sand filters to absorb nutrients can be improved with nutrient binding compounds, such as lime. Long-term hydrological, chemical and biological research and monitoring data on Lake Pyhäjärvi and its catchment provide a basis for water protection measures and improve our understanding of the complicated physical, chemical and biological interactions between the terrestrial and aquatic realms. In addition to measurements carried out in field conditions, Lake Pyhäjärvi and its catchment were studied using various modelling methods. In the calibration and validation of models, long-term and wide-ranging time series data proved to be valuable. Collaboration between researchers, modellers and local water managers further improves the reliability and usefulness of models. Lake Pyhäjärvi and its catchment can also be regarded as a good research laboratory from the point of view of the Baltic Sea. The main problem in both of them is eutrophication caused by excess nutrients, and nutrient loading has to be reduced – especially from agriculture. Mitigation measures are also similar in both cases.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
With the new age of Internet of Things (IoT), object of everyday such as mobile smart devices start to be equipped with cheap sensors and low energy wireless communication capability. Nowadays mobile smart devices (phones, tablets) have become an ubiquitous device with everyone having access to at least one device. There is an opportunity to build innovative applications and services by exploiting these devices’ untapped rechargeable energy, sensing and processing capabilities. In this thesis, we propose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that can distribute tasks among plethora of mobile smart devices in the IoT world. We develop and demonstrate an android-based proof of concept load-balancing application. We also present a model of the system which is used to validate the efficiency of the load balancing approach under varying application scenarios. Load balancing concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the traffic send to the Cloud and the energy consumption of the devices. The data acquired from the experimental outcomes enable us to determine the feasibility and cost-effectiveness of a load balanced P2P smart phone-based applications.