50 resultados para Load forecasting
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.
Resumo:
Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Resumo:
Tämän työn tavoitteena on skenaarioiden avulla luoda pitkän aikavälin alueellinen sähkökuormien kehitysennuste Rovaniemen Verkko Oy:lle. Pitkän aikavälin kuormitusennusteet ovat välttämättömiä verkon kehittämisen pohjalle, jotta verkko voidaan mitoittaa vastaamaan kuormitusta pitkälle tulevaisuuteen tekniset ja taloudelliset vaatimukset huomioiden. Kuormitusennusteen onkin jatkossa tarkoitus toimia apuvälineenä verkon strategisessa kehittämisessä. Pohjana kuormitusennusteissa on tilastokeskuksen ja Rovaniemen kaupungin väestö- ja työpaikkaennusteet. Väestöennusteiden ja erilaisten rakentamistilastoiden avulla arvioidaan uudisrakentamisen määrä tulevaisuudessa. Uudisrakentamisen kuormitusvaikutuksiin päästään työssä määritettyjen paikallisten ja rakennustyyppikohtaisten sähkön ominaiskulutuksien avulla. Kuormituksien alueellinen sijoittautuminen arvioidaan kaavoituksen ja kaupungin maankäytön toteuttamisohjelman avulla. Työssä tutkitaan myös tulevaisuudessa sähkönkäytössä tapahtuvien useiden muutosten vaikutusta alueelliseen kuormitukseen. Näitä muutoksia ovat muun muassa sähköautojen, hajautetun tuotannon, lämpöpumppujen ja kysynnän jouston lisääntyminen. Myös rakennusten jatkuvasti parantuva energiatehokkuus aiheuttaa muutoksia sähkön kulutukseen.
Resumo:
In this final project the high availability options for PostgreSQL database management system were explored and evaluated. The primary objective of the project was to find a reliable replication system and implement it to a production environment. The secondary objective was to explore different load balancing methods and compare their performance. The potential replication methods were thoroughly examined, and the most promising was implemented to a database system gathering weather information in Lithuania. The different load balancing methods were tested performance wise with different load scenarios and the results were analysed. As a result for this project a functioning PostgreSQL database replication system was built to the Lithuanian Hydrometeorological Service's headquarters, and definite guidelines for future load balancing needs were produced. This study includes the actual implementation of a replication system to a demanding production environment, but only guidelines for building a load balancing system to the same production environment.
Resumo:
Summary
Resumo:
Abstract
Resumo:
This master's thesis coversthe concepts of knowledge discovery, data mining and technology forecasting methods in telecommunications. It covers the various aspects of knowledge discoveryin data bases and discusses in detail the methods of data mining and technologyforecasting methods that are used in telecommunications. Main concern in the overall process of this thesis is to emphasize the methods that are being used in technology forecasting for telecommunications and data mining. It tries to answer to some extent to the question of do forecasts create a future? It also describes few difficulties that arise in technology forecasting. This thesis was done as part of my master's studies in Lappeenranta University of Technology.
Resumo:
On yleisesti tiedossa, että väsyttävän kuormituksen alaisena olevat hitsatut rakenteet rikkoutuvat juuri hitsausliitoksista. Täyden tunkeuman hitsausliitoksia sisältävien rakenteiden asiantunteva suunnittelu janykyaikaiset valmistusmenetelmät ovat lähes eliminoineet väsymisvauriot hitsatuissa rakenteissa. Väsymislujuuden parantaminen tiukalla täyden tunkeuman vaatimuksella on kuitenkin epätaloudellinen ratkaisu. Täyden tunkeuman hitsausliitoksille asetettavien laatuvaatimuksien on määriteltävä selkeät tarkastusohjeet ja hylkäämisperusteet. Tämän diplomityön tarkoituksena oli tutkia geometristen muuttujien vaikutusta kuormaa kantavien hitsausliitosten väsymislujuuteen. Huomio kiinnitettiin pääasiassa suunnittelumuuttujiin, joilla on vaikutusta väsymisvaurioiden syntymiseen hitsauksen juuren puolella. Nykyiset määräykset ja standardit, jotka perustuvat kokeellisiin tuloksiin; antavat melko yleisiä ohjeita hitsausliitosten väsymismitoituksesta. Tämän vuoksi muodostettiin kokonaan uudet parametriset yhtälöt sallitun nimellisen jännityksen kynnysarvon vaihteluvälin, ¿¿th, laskemiseksi, jotta vältettäisiin hitsausliitosten juuren puoleiset väsymisvauriot. Lisäksi, jokaiselle liitostyypille laskettiin hitsin juuren puolen väsymisluokat (FAT), joita verrattiin olemassa olevilla mitoitusohjeilla saavutettuihin tuloksiin. Täydentäviksi referensseiksi suoritettiin useita kolmiulotteisia (3D) analyysejä. Julkaistuja kokeellisiin tuloksiin perustuvia tietoja käytettiin apuna hitsausliitosten väsymiskäyttäytymisen ymmärtämiseksi ja materiaalivakioiden määrittämiseksi. Kuormaa kantavien vajaatunkeumaisten hitsausliitosten väsymislujuus määritettiin käyttämällä elementtimenetelmää. Suurimman pääjännityksen kriteeriä hyödynnettiin murtumiskäyttäytymisen ennakoimiseksi. Valitulle hitsatulle materiaalille ja koeolosuhteille murtumiskäyttäytymistä mallinnettiin särön kasvunopeudella da/dN ja jännitysintensiteettikertoimen vaihteluvälillä, 'K. Paris:n yhtälön numeerinen integrointi suoritettiin FRANC2D/L tietokoneohjelmalla. Saatujen tulosten perusteella voidaan laskea FAT tutkittavassa tapauksessa. ¿¿th laskettiin alkusärön jännitysintensiteettikertoimen vaihteluvälin ja kynnysjännitysintensiteettikertoimen, 'Kth, perusteella. ¿Kth arvoa pienemmällä vaihteluvälillä särö ei kasva. Analyyseissäoletuksena oli hitsattu jälkikäsittelemätön liitos, jossa oli valmis alkusärö hitsin juuressa. Analyysien tulokset ovat hyödyllisiä suunnittelijoille, jotka tekevät päätöksiä koskien geometrisiä parametreja, joilla on vaikutusta hitsausliitosten väsymislujuuteen.
Resumo:
Numerical weather prediction and climate simulation have been among the computationally most demanding applications of high performance computing eversince they were started in the 1950's. Since the 1980's, the most powerful computers have featured an ever larger number of processors. By the early 2000's, this number is often several thousand. An operational weather model must use all these processors in a highly coordinated fashion. The critical resource in running such models is not computation, but the amount of necessary communication between the processors. The communication capacity of parallel computers often fallsfar short of their computational power. The articles in this thesis cover fourteen years of research into how to harness thousands of processors on a single weather forecast or climate simulation, so that the application can benefit as much as possible from the power of parallel high performance computers. The resultsattained in these articles have already been widely applied, so that currently most of the organizations that carry out global weather forecasting or climate simulation anywhere in the world use methods introduced in them. Some further studies extend parallelization opportunities into other parts of the weather forecasting environment, in particular to data assimilation of satellite observations.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
In the European Union, the importance of mobile communications was realized early on. The process of mobile communications becoming ubiquitous has taken time, as the innovation of mobile communications diffused into the society. The aim of this study is to find out how the evolution and spatial patterns of the diffusion of mobile communications within the European Union could be taken into account in forecasting the diffusion process. There is relatively lot of research of innovation diffusion on the individual (micro) andthe country (macro) level, if compared to the territorial level. Territorial orspatial diffusion refers either to the intra-country or inter-country diffusionof an innovation. In both settings, the dif- fusion of a technological innovation has gained scarce attention. This study adds knowledge of the diffusion between countries, focusing especially on the role of location in this process. The main findings of the study are the following: The penetration rates of the European Union member countries have become more even in the period of observation, from the year 1981 to 2000. The common digital GSM system seems to have hastened this process. As to the role of location in the diffusion process, neighboring countries have had similar diffusion processes. They can be grouped into three, the Nordic countries, the central and southern European countries, and the remote southern European countries. The neighborhood effect is also domi- nating in thegravity model which is used for modeling the adoption timing of the countries. The subsequent diffusion within a country, measured by the logistic model in Finland, is af- fected positively by its economic situation, and it seems to level off at some 92 %. Considering the launch of future mobile communications systemsusing a common standard should implicate an equal development between the countries. The launching time should be carefully selected as the diffusion is probably delayed in economic downturns. The location of a country, measured by distance, can be used in forecasting the adoption and diffusion. Fi- nally, the result of penetration rates becoming more even implies that in a relatively homoge- nous set of countries, such as the European Union member countries, the estimated final pene- tration of a single country can be used for approximating the penetration of the others. The estimated eventual penetration of Finland, some 92 %, should thus also be the eventual level for all the European Union countries and for the European Union as a whole.