3 resultados para Liquid Crystal Light Valve

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospraying or electrostatic atomisation is a process of liquid disruption by electrostatic forces. When liquid is brought into an electric field, charge is induced to its surface. Once the repulsive electrostatic force exceeds the liquid surface tension, the liquid disrupts into small highly charged droplets. The size of the electrosprayed droplets can range from hundreds of micrometers down to a few tens of nanometers. Electrospraying can be used not only to produce droplets, but also solid particles. The research presented in this thesis concentrates on producing drug particles by this method. In the experiments, a drug powder was dissolved in a convenient solvent and the solution was atomised. The solvent was then evaporated from the formed droplets in a drying medium and inside each droplet, a dense cluster of the dissolved drug remained. From the pharmaceutical point of view, the most important characteristics of the produced particles are size distribution, porosity, crystal form and degree of crystallinity. These properties affect the dissolution behaviour and ultimately the drug bioavailability in the body. The effects of electrostatic atomization on the aforementioned characteristics are generally not well understood. The research focused on studying these particle properties and finding possible correlations with the spraying parameters. The produced droplets were dried either under atmospheric or reduced pressure, the latter in order to improve the drying process. Special emphasis was put on implementing the spraying under reduced pressure, and the effects of the drying pressure on particle properties. Based on the results, the possibilities to enhance the dissolution of poorly soluble drugs by this method were estimated. In the course of experiments, it was also discovered that electrospraying may have a profound effect on the polymorphic form of the produced drug particles. In the light of the obtained results, it was concluded that electrospraying may offer a valuable tool to overcome some of the challenges met in modern drug development and formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.